Tìm n sao cho :
a, n+1 chia hết cho n-1
b,3n+2 chia hết cho n-3
c,n^2+5 chia hết cho n+3
Tìm số tự nhiên n khác 0 sao cho
a) n+6 chia hết cho n-1
b)3n+5 chia hết cho n+1
\(a,\Rightarrow n-1+7⋮n-1\)
Mà \(n-1⋮n-1\Rightarrow7⋮n-1\)
\(\Rightarrow n-1\inƯ\left(7\right)=\left\{1;7\right\}\\ \Rightarrow n\in\left\{2;8\right\}\)
\(b,\Rightarrow3\left(n+1\right)+2⋮n+1\)
Mà \(3\left(n+1\right)⋮n+1\Rightarrow2⋮n+1\)
\(\Rightarrow n+1\inƯ\left(2\right)=\left\{1;2\right\}\\ \Rightarrow n=1\left(n\ne0\right)\)
tìm số nguyên n sao cho :
1,n^2+2n-4 chia hết cho 11
2,2n^3+n^2+7n+1 chia hết cho 2n -1
3,n^4-2n^3+2n^2-2n+1 chia hết cho n^4-1
o l m . v n
4,n^3-2 chia hết cho n-2
5, n^3-3n^2-3n-1 chia hết cho n^2+n+1
6, 5^n-2^n chia hết cho 63
1, tìm số nguyên n biết
a, n+3 chia hết cho n-1
b, 2n-1 chia hết cho n+2
2, tìm số nguyên n sao cho
a, 3n+2 chia hết cho n-1
b, 3n+24 chia hết cho n-4
c, n^2+5 chia hết cho n+1
TÌm n sao cho
a) 3n + 5 chia hết cho n
b) n + 5 chia hết cho n - 2
c) 3n - 1 chia hết cho 3 - 2n
1. Tìm n thuộc Z để giá trị của biểu thức A= n^3 + 2n^2 - 3n + 2 chia hết cho giá trị của biểu thức B= n^2 - n
2.a. Tìm n thuộc N để n^5 + 1 chia hết cho n^3 + 1
b. Giải bài toán trên nếu n thuộc Z
3. Tìm số nguyên n sao cho:
a. n^2 + 2n - 4 chia hết cho 11
b. 2n^3 + n^2 + 7n + 1 chia hết cho 2n - 1
c.n^4 - 2n^3 + 2n^2 - 2n + 1 chia hết cho n^4 - 1
d. n^3 - n^2 + 2n + 7 chia hết cho n^2 + 1
4. Tìm số nguyên n để:
a. n^3 - 2 chia hết cho n - 2
b. n^3 - 3n^2 - 3n - 1 chia hết cho n^2 + n + 1
c. 5^n - 2^n chia hết cho 63
1 tìm n thuộc z biết
a, 7 chia hết n-2
2 tìm n thuộc z biết
a, 2n+5 chia hết cho n-1
b, n+3 chia hết cho 2n -1
3 tìm n thuộc z biết
a, 2n-5 chia hết cho n+1 và n+1 chia hết cho 2n+5
b, 3n+2 chia hết cho n-2 và n-2 chia hết cho 3n+2
Tìm giá trị nguyên của n
a/ 7 chia hết cho n+2
b/ n+1 chia hết cho n-3
c/ Để giá trị của biểu thức \(3n^3+10n^2-5\) chia hết cho giá trị của biểu thức 3n+1
d/ Để giá trị của biểu thức \(10n^2+n-10\) chia hết cho giá trị của biểu thức n-1
a: =>\(n+2\in\left\{1;-1;7;-7\right\}\)
=>\(n\in\left\{-1;-3;5;-9\right\}\)
b: =>n-3+4 chia hết cho n-3
=>\(n-3\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(n\in\left\{4;2;5;1;7;-1\right\}\)
c: =>3n^3+n^2+9n^2-1-4 chia hết cho 3n+1
=>\(3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(n\in\left\{0;-\dfrac{2}{3};\dfrac{1}{3};-1;1;-\dfrac{5}{3}\right\}\)
d: =>10n^2-10n+11n-11+1 chia hết cho n-1
=>\(n-1\in\left\{1;-1\right\}\)
=>\(n\in\left\{2;0\right\}\)
Tìm số nguyên n sao cho
a) n+5 chia hết cho n -2
b) 2n+1 chia hết cho n-5
c) n2+3n-13 chia hết cho n+3
d) n2+3 chia hết cho n-1
e) n+16 chia hết cho n+1
a) n + 5 chia hết cho n - 2
n - 2 + 7 chia hết cho n - 2
=> 7 chia hết cho n - 2
=> n - 2 thuộc Ư(7) = {1 ; -1 ; 7 ; -7}
Xét 4 trường hợp, ta có :
n - 2 = 1 => n = 3
n - 2 = -1 => n = 1
n - 2 = 7 => n = 9
n - 2 = -7 => n = -5
b) 2n + 1 chia hết cho n - 5
2n - 10 + 11 chia hết cho n - 5
2(n - 5) + 11 chia hết cho n - 5
=> 11 chia hết cho n -5
=> n - 5 thuộc Ư(11) = {1 ; -1 ; 11; -11}
Còn lại giống bài a
c) n2 + 3n - 13 chia hết cho n + 3
n(n + 3) - 13 chia hết cho n + 3
=> 13 chia hết cho n + 3
=> n + 3 thuộc Ư(13) = {1 ; -1 ; 13 ; -13}
Còn lại giống bài a
d) n2 + 3 chia hết cho n - 2
n2 - 2n + 2n + 3 chia hết cho n - 2
n(n - 2) + 2n + 3 chia hết cho n - 2
=> 2n + 3 chia hết cho n - 2
=> 2n - 4 + 7 chia hết cho n - 2
=> 2(n - 2) + 7 chia hết cho n - 2
=> 7 chia hết cho n - 2
=> n - 2 thuộc Ư(7) = {1 ; -1 ; 7 ; -7}
Còn lại giống bài a
e) n + 16 chia hết cho n + 1
=> n + 1 + 15 chia hết cho n + 1
=> 15 chia hết cho n + 1
=> n + 1 thuộc Ư(15) = {1 ; -1 ; 3 ; -3 ; 5 ; -5 ; 15 ; -15}
Còn lại giống bài a
Bài 4: Tìm số tự nhiên n sao cho:
a) 4n - 5 chia hết cho 2n - 1
b) n2 + 3n + 1 chia hết cho n +1
a,
Ta có: 4n-5 chia hết cho 2n-1
=>4n-2-3 chia hết cho 2n-1
=>2.(2n-1)-3 chia hết cho 2n-1
=>3 chia hết cho 2n-1
=>2n-1=Ư(3)=(-1,-3,1,3)
=>2n=(0,-2,2,4)
=>n=(0,-1,1,2)
Vậy n=0,-1,1,2