Cho A= 5 + 52 +53 + 54 + ............ + 5992 . Hãy chứng minh 4A + 5 là một lũy thừa của 125
Bài 3 (1điểm): Cho A = 5 + 52 + 53 + … + 5992 Chứng minh rằng: 4A + 5 là một luỹ thừa của 125.
\(A=5+5^2+5^3+...+5^{992}\)
\(\Rightarrow5A=5^2+5^3+5^4+...+5^{993}\)
\(\Rightarrow4A=5A-A=5^2+5^3+5^4+...+5^{993}-5-5^2-5^3-...-5^{992}=5^{993}-5\)
\(\Rightarrow4A+5=5^{993}-5+5=5^{993}=\left(5^3\right)^{331}=125^{331}\) là một lũy thừa của 125
Cho A=50 +51 +52 +...+52010 +52011
a) Chứng tỏ rằng 4A+1 là 1 lũy thừa cơ số 5. b)Tìm xN biết 4A+1=5x
c) Chứng minh A 6
d) Tìm số dư khi chia A cho 31
Cho A = 5 + 52 + 53 + .... + 5992
Chứng minh rằng 4A + 5 là một lũy thừa của 125
Mong các bn giúp mình làm chi tiết câu này nhé !
Ta có: \(A+5+5^2+5^3+...+5^{992}\)
\(\Rightarrow5A=5^2+5^3+5^4+...+5^{993}\)
\(\Rightarrow5A-A=\left(5^2+5^3+5^4+...+5^{993}\right)-\left(5+5^2+5^3+...+5^{992}\right)\)
\(\Rightarrow4A=5^{993}-5\)
=> 4A + 5 = 5993 = (53)331 = 125331
Vậy 4A + 5 là một lũy thừa của 125
A = 5 + 52 + 53 + ...+ 5992
5A = 52 + 53 + 54 + ... + 5993
5A - A = (52 + 53 + 54 + ... + 5993) - (5 + 52 + 53 + ...+ 5992)
4A = 5993 - 5
4A + 5 = 5993
4A + 5 = (53)331
4A + 5 =125331
Vậy 4A + 5 là một lũy thừa của 125
\(A=5+5^2+5^3+...+5^{992}\)
\(5A=5\left(5+5^2+5^3+...+5^{992}\right)\)
\(5A=\left(5\cdot5\right)+\left(5\cdot5^2\right)+\left(5\cdot5^3\right)+...+\left(5\cdot5^{992}\right)\)
\(5A=5^2+5^3+5^4+...+5^{993}\)
\(5A-A=\left(5^2+5^3+5^4+...+5^{993}\right)-\left(5+5^2+5^3+...+5^{992}\right)\)
\(4A=5^2+5^3+5^4+...+5^{993}-5-5^2-5^3-...-5^{992}\)
\(4A=\left(5^2-5^2\right)+\left(5^3-5^3\right)+\left(5^4-5^4\right)+...+\left(5^{992}-5^{992}\right)+\left(5^{993}-5\right)\)
\(4A=5^{993}-5\)
\(\Rightarrow4A+5=5^{993}-5+5=5^{993}=\left(5^3\right)^{221}=125^{221}\)
Vậy 4A+5 là 1 lũy thừa của 5 (đpcm)
Cho A =5+5^2+5^3+........+5^992
Chứng minh rằng 4A là một lũy thừa của 125
Giúp mình vứi mọi người ưi
MAI MÌNH KIỂM TRA 1 TIẾT RÙI
\(A=5+5^2+5^3+...+5^{992}\)
\(5A=5^2+5^3+5^4+...+5^{993}\)
\(5A-A=\left(5^2+5^3+...+5^{993}\right)-\left(5+5^2+...+5^{992}\right)\)
\(4A=5^{993}-5\)
\(4A=5^3.5^{331}-5\)
mà 53 = 125
=> 4A là một lũy thừa của 125 ( đpcm )
\(A=5+5^2+5^3+...+5^{992}\)
\(\Rightarrow5A=5^2+5^3+5^4+...+5^{993}\)
\(\Rightarrow5A-A=4A=\left(5^2+5^3+5^4+...+5^{993}\right)-\left(5+5^2+5^3+...+5^{992}\right)=5^{993}-5\)
Mình nghĩ bạn ghi sai đề vì phải 4A+5 mới ra lũy thừa của 125
Là thế này:
\(\Rightarrow4A+5=5^{993}=\left(5^3\right)^{331}=125^{331}\)
nên 4A+5 là lũy thừa của 125
Cho A = 5 + 5^2 + 5^3 + ..... + 5^2016
a) Chứng minh A chia hết cho 126
b) Chứng minh 4A + 5 là một lũy thừa
c)Tìm x thuộc N để 4A + 5 = 5^x
a/ \(A=5+5^2+5^3+..........+3^{2016}\)
\(\Leftrightarrow A=\left(5+5^4\right)+\left(5^2+5^5\right)+...........+\left(5^{2013}+5^{2016}\right)\)
\(\Leftrightarrow A=5\left(1+5^3\right)+5^2\left(1+5^3\right)+..........+5^{2013}\left(1+5^3\right)\)
\(\Leftrightarrow A=5.126+5^2.126+............+5^{2013}.126\)
\(\Leftrightarrow A=126\left(1+5^2+........+5^{2013}\right)⋮126\left(đpcm\right)\)
b/ \(A=5+5^2+5^3+..........+5^{2016}\)
\(\Leftrightarrow5A=5^2+5^3+...............+5^{2016}+5^{2017}\)
\(\Leftrightarrow5A-A=\left(5^2+5^3+........+5^{2017}\right)-\left(5+5^2+.......+5^{2016}\right)\)
\(\Leftrightarrow4A=5^{2017}-5\)
\(\Leftrightarrow4A+5=5^{2017}\)
\(\Leftrightarrow4A+5\) là 1 lũy thừa
c/ Ta có :
\(4A+5=5^{2017}\)
Mà \(4A+5=5^x\)
\(\Leftrightarrow5^{2017}=5^x\)
\(\Leftrightarrow x=2017\)
Vậy ..
Tính giá trị các lũy thừa sau: 52, 53, 54
52 = 5.5 = 25;
53 = 52.5 = 25.5 = 125;
54 = 53.5 = = 125.5 = 625.
Biểu diễn các lũy thừa sao đây thành những lũy thùa cùng cơ số
(33)2 ; (23)5 ; 8110 ; (32)3
b, (53) ; (54)3 ; (52)4
a) Cho A=1-3+3^2-3^3+...-3^2003+3^2004.Chứng minh 4A-1 là lũy thừa của 3
b) Chứng minh rằng A là một lũy thừa của 2 với A=4+2^3+2^4+...+2^2003+2^2004
Từng bài 1 thôi nhs!
a) 3A = 3 - 32 + 33 - 34 + ... -32004+ 32005
3A + A = 3 - 32 + 33 -34 + ... -32004 + 32005 +1 - 3 + 32- 33 + 34 - ....-32003+32004
4A = 32005 + 1
=> 4A - 1 = 32005 là lũy thừa của 3
=> ĐPCM
đề có thiếu ko đó
A = 4 + 23 + 24 + 25 + ...+ 22003 + 22004
đặt B = 23 + 24 + 25 + ...+ 22003 + 22004
2B= 24 + 25 + 26 + ....+ 22004 + 22005
2B-B= ( 24 + 25 + 26 + ....+ 22004 + 22005 ) - ( 23 + 24 + 25 + ...+ 22003 + 22004 )
B = 24 + 25 + 26 + ....+ 22004 + 22005 - 23 - 24 - 25 - ...- 22003 - 22004
B = 22005 - 23
B = 22005 - 8
=> A = 4 + B = 4 + 22005 - 8 = 22005 - 4 = .....
Chứng tỏ 4A+25 là một lũy thừa của 5 với:
A= 52+53+...+52012