2^2+2^5+2^k=A^2
k, A là số nguyên dương, tìm A,k
`k^2-k+10`
`=(k-1/2)^2+9,75>9`
`k^2-k+10` là số chính phương nên đặt
`k^2-k+10=a^2(a>3,a in N)`
`<=>4k^2-4k+40=4a^2`
`<=>(2k-1)^2+39=4a^2`
`<=>(2k-1-2a)(2k-1+2a)=-39`
`=>2k-2a-1,2k+2a-1 in Ư(39)={+-1,+-3,+-13,+-39}`
`2k+2a>6`
`=>2k+2a-1> 5`
`=>2k+2a-1=39,2k-2a-1=-1`
`=>2k+2a=40,2k-2a=0`
`=>a=k,4k=40`
`=>k=10`
Vậy `k=10` thì `k^2-k+10` là SCP
`+)2k+2a-1=13,2k-2a-1=-3`
`=>2k+2a=14,2k-2a=-2`
`=>k+a=7,k-a=-1`
`=>k=3`
Vậy `k=3` hoặc `k=10` thì ..........
Cho K = a2 - 2 / ab + 2. Tìm a, b là các số nguyên dương để K nguyên
lop 6 ma hoc dot nhu bo tot
Cho dãy số thực dương a1,a2,a3,... thỏa mãn : ak.ak+2 = ak+1 + 1 với mọi k nguyên dương.Nếu a1,a2 đều nguyên dương , tìm giá trị lớn nhất của a2014.
chho trước 3 số nguyên dương a,b,k 2 số nguyên dương x,y là đặc biệt nếu thỏa mãn a<= x^2,a<=b, a<=y^3,a<=b và giá trị tuyệt đói x^2-y^3 nhỏ hơn hoặc bằng k. Tìm số lượng các cặp đặc biệt
(làm ơn giúp đỡ mình cần nó trước ngày 29/1) :((
#include <bits/stdc++.h>
using namespace std;
long long a,b,k,x,y,dem=0;
int main()
{
cin>>a>>b>>k;
for (x=1; x<=k; x++)
{
for (y=1; y<=k; y++)
{
if (a<=x*x && a<=b && a<=y*y*y && a<=b) dem++;
}
}
cout<<dem;
return 0;
}
Bài 1. tìm A ϵ N để
a) P=(a-1)(a2+2a+5) là số nguyên tố
b) P=(2a-1)(13a-a2-5) là số nguyên tố
Bài 2.
a) Viết số sau dưới dạng tổng của K hợp số 1013. tìm K lớn nhất
b) Viết số sau dưới dạng tổng của K số nguyên tố 1013.tìm K lớn nhất
Cho tập hợp A={1,2,...,16} . Hãy tìm số nguyên dương k NN sao cho mỗi tập hợp con gồm k ptư của A đều tồn tại 2 số phân biệt a,b mà a^2+b^2 là SNT
cho trước 3 số nguyên dương a,b,k 2 số nguyên dương x,y là đặc biệt nếu thỏa mãn a<= x^2,a<=b, a<=y^3,a<=b và giá trị tuyệt đói x^2-y^3 nhỏ hơn hoặc bằng k. Tìm số lượng các cặp đặc biệt
(làm ơn giúp đỡ mình cần nó trước ngày 29/1) (pascal)
uses crt;
var a,b,k,dem,x,y:longint;
begin
clrscr;
readln(a,b,k);
dem:=0;
for x:=1 to k do
for y:=1 to k do
if ((a<=b) and (a<=x*x) and (a<=y*y*y)) then dem:=dem+1;
writeln(dem);
readln;
end.
Giả sử a,n\(\ge2\) là các số nguyên \(a^n+1\) là 1 số nguyên tố.Chứng minh rằng \(n=2^k\) với số nguyên dương k nào đó
Lời giải:
Giả sử $n$ có ước nguyên tố khác 2. Gọi ước đó là $p$ với $p$ lẻ.
Khi đó: $n=pt$ với $t$ nguyên dương bất kỳ.
$a^n+1=(a^t)^p+1\vdots a^t+1$
Mà $a^t+1\geq 3$ với mọi $a\geq 2; t\geq 1$ và $a^n+1> a^t+1$ nên $a^n+1$ là hợp số. Điều này vô lý theo giả thiết.
Vậy điều giả sử là sai, tức là $n$ không có ước nguyên tố lẻ nào cả. Vậy $n=2^k$ với $k\in\mathbb{N}$
Lấy $a=2; n=4$ ta có $a^n+1=17$ là snt. Vậy $n=2^k$ với $k$ nguyên dương.
Bài 1 : Tìm k thuộc N để các số sau là số nguyên tố :
a) 26 . k - 11 . k
b) k^2 + 4k
c) 5^k +10
Bài 2 : Cho A = 8^2017 - 3^2013 . CMR A là hợp số
Bài 3 : Tìm số nguyên tố P để các số sau là nguyên tố :
a) P + 2
b) P + 6
c) P + 8
d) p + 14
Tớ chi lam bai 2 nhe
Ta có 8^2017=8^4.504+1=(8^4)^504 .8 =(...1)^504 .8
=(....1).8 (vì tận cùng 1 mũ bao nhiêu cũng vẫn là 1)
=(....8)
Lại có:3^2013=3^4.503+1=(3^4)^503 .3=(...1)^503 .3=(...1).3 (vì tận cùng là 1...)=...3
Đỏ đô :A=(...8)-(...3)=....5 chia hết cho 5 mà A lớn hơn 5 nên A là hợp số
VayA là hộp số
Tìm các số tự nhiên k để cho số 2k + 24 + 27 là một số chính phương
Tìm các số nguyên x sao cho A = x(x-1)(x-7)(x-8) là một số chính phương
Cho A = p4 trong đó p là một số nguyên tố
a. Số A có những ước dương nào ?
b. Tìm các giá trị của p để tổng các ước dương của A là một số chính phương