Cho tam giác ABC có M là trung điểm của BC. Dựng các hình bình hành ABCD và ACBE. Chứng minh:
a) Ba đường AM, BD, CE đồng quy
b) Ba đường AM, CD, BE đồng quy
HELP ME!!!!!
Cho tam giác ABC có M là trung điểm của BC. Dựng các hình bình hành ABCD và ACBE. Chứng minh: a) Ba đường thẳng AM, BD, CE đồng quy b) Ba đường thẳng AM, CD, BE đồng quy
Cho tam giác ABC có M là trung điểm của BC. Dựng các hình bình hành ABCD và ABCE. Chứng minh:
a, ba đường thằng AM,BD,CE đồng quy
b, ba đường thẳng AM,CD,BE đồng quy
Mọi người giúp em giải gấp câu này với ạ :(
Cho tam giác ABC có M là trung điểm của BC. Dựng các hình bình hành ABCD và ACBE. Chứng minh : ba đường thẳng AM, BD, CE đồng quy .Ba đường thẳng AM, CD, BE đồng quy
Cho tam giác ABC cân tại A. Kẻ các tia phân giác BD, CE. Lấy M là trung điểm của BC.
a) Chứng minh AM là tia phân giác của góc BAC.
b) Ba đường thẳng AM, BD, CE đồng quy tại H.
a) Chứng minh được ∆ A M B = ∆ A M C (c.c.c).
Từ đó suy ra AM là tia phân giác của góc BAC.
b) Xét tam giác ABC có AM, BD,CE là các tia phân giác. Từ tính chất ba đường phân giác trong tam giác, suy ra ba đường thẳng AM,BD,CE đồng quy.
Cho tam giác ABC, vuông tại A,đường trung tuyến AM.Gọi D là trung điểm của AB và E là điểm đối xứng với điểm M qua D. Gọi K là trung điểm của AC.Gọi F là giao điểm của AM và CE.
a, Chứng minh rằng tứ giác AEBM là hình bình hành.
b,Chứng minh rằng DE // BC và BC= 4DF.
c,Chứng minh ba đường thẳng AM,DK,FC đồng quy và DK= AM.
Cho tam giác ABC cân tại A. Kẻ các đường phân giác BD và CE, M là trung điểm của BC
a) AM là đường phân giác của BAC
b) Ba đường phân giác BD, CE, AM đồng quy
Cho tam giác $ABC$ cân tại $A$ nội tiếp đường tròn $(O)$. Các tiếp tuyến của đường tròn vẽ từ $A$ và $C$ cắt nhau tại $M$. Trên tia $AM$ lấy điểm $D$ sao cho $AD = BC$. Chứng minh rằng:
a) Tứ giác $ABCD$ là hình bình hành.
b) Ba đường thẳng $AC$, $BD$, $OM$ đồng quy.
a/ Ta có
\(AD\perp OA\) (AD là tiếp tuyến)
O là tâm đường tròn ngoại tiếp \(\Delta ABC\) => AO là trung tuyến của \(\Delta ABC\Rightarrow BC\perp AO\) (trong tg cân đường trung tuyến xuất phát từ đỉnh đồng thời là đường cao)
=> AD//BC (cùng vuông góc với OA); mà AD=BC (gt) => ABCD là hình bình hành ( Tứ giác có 1 cặp cạnh đối // và bằng nhau thì tứ giác đó là hình bình hành)
b/ Do ABCD là hình bình hành nên AC cắt BD tại trung điểm mỗi đường
Mặt khác ta cũng có OM đi qua trung điểm của AC (Hai tiếp tuyến cùng xuất phát từ 1 điểm thì đường nối điểm đó với tâm đường tròn thì vuông góc và chia đôi dây cung nối 2 tiếp điểm)
=> AC; BD; OM đồng quy
) Có:
a)
Vì vậy AD = BC và AD//BC nên tứ giác ABCD là hình bình hành.
b) Theo tứ giác ABCD là hình thành nên BD và AC cắt nhau tại trung điểm của mỗi đường.
Theo tính chất của hai tiếp tuyến cắt nhau thì MA=MC và OM là tia phân giác góc AMC.
AM = MC nên tam giác AMC cân tại M và MO là tia phân giác của tam giác AMC nên OM cũng đi qua trung điểm của AC.
Suy ra ba đường thẳng AC, BD, OM đồng quy.
a) Có:
,
Mà
Vì vậy AD = BC và AD//BC nên tứ giác ABCD là hình bình hành.
b) Theo tứ giác ABCD là hình thành nên BD và AC cắt nhau tại trung điểm của mỗi đường.
Theo tính chất của hai tiếp tuyến cắt nhau thì và OM là tia phân giác góc AMC.
AM = MC nên tam giác AMC cân tại M và MO là tia phân giác của tam giác AMC nên OM cũng đi qua trung điểm của AC.
Suy ra ba đường thẳng AC, BD, OM đồng quy.
Cho tam giác ABC. Gọi D và E thứ tự thuộc các cạnh AC, AB sao cho AC=3AD, AB=3AE. Gọi M, K là trung điểm của BC, DC. Chứng minh rằng:
a) BD đi qua trung điểm của AM
b) Ba đường thẳng BD, CE, AM đồng quy toán 8
mik cho gợi ý thôi né :cậu c/m cho :
S2=S5 => S1=S4
Mà S tam giác ABM=S tam giác AMC=/2S tam giác ABC
C/m :S1+S2+S3 =S4+S5+S6=1/2 S tam giác ABC
=> Đpcm
Chúc bạn học tốt nha!
Bài 2. Cho tam giác ABc cân tại A có đường trung tuyến AM, đường cao BE. Trên tia BA lấy điểm F sao cho BF = CE.
a)Chứng minh ΔBFC = ΔCEB
b) Chứng minh ba đường thẳng BE, CF, AM đồng quy
a: Xét ΔBFC và ΔCEB có
BF=CE
\(\widehat{FBC}=\widehat{ECB}\)
BC chung
Do đó: ΔBFC=ΔCEB
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến ứng với cạnh đáy BC
nên AM là đường cao ứng với cạnh BC
Ta có: ΔBFC=ΔCEB
nên \(\widehat{BFC}=\widehat{CEB}\)
mà \(\widehat{CEB}=90^0\)
nên \(\widehat{BFC}=90^0\)
Xét ΔABC có
AM là đường cao ứng với cạnh BC
BE là đường cao ứng với cạnh AC
CF là đường cao ứng với cạnh AB
Do đó: AM,BE,CF đồng quy
a) Xét tam giác BFC và CEB ta có:
Góc FBC = góc ECB
BF = CE
BC cạnh chung
=> tam giác BFC = tam giác CEB (c-g-c)
a) Xét ΔBFC và ΔCEB có:
BF=EC(gt)
\(\widehat{FBC}=\widehat{ECB}\)(tam giác ABC cân tại A)
BC chung
=> ΔBFC=ΔCEB(c.g.c)
b) Xét tam giác ABC cân tại A có
AM là đường trung tuyến
=> AM là đường cao của tam giác ABC(1)
Ta có: ΔBFC=ΔCEB(cmt)
\(\Rightarrow\widehat{BFC}=\widehat{BEC}=90^0\)
=> CF là đường cao của tam giác ABC(2)
Từ (1),(2) và BE là đường cao của tam giác ABC
=> BE,,CF,AM đồng quy