cho tam giác ABC(BC=12cm), gọi I,K lần lượt là trung điểm của AB và AC; P,Q lần lượt
là trung điểm của BI và CK
a) Tính IK
b) Chứng minh: PQ// IK// BC và tính PQ
\(AC=\sqrt{12^2+16^2}=20\left(cm\right)\)
AK là phân giác
=>BK/AB=CK/AC
=>BK/3=CK/5=16/8=2
=>BK=6cm
Cho tam giác ABC cân tại A. Gọi E, D lần lượt là trung điểm AB, AC
a) Cm tứ giác BEDC là hình thang cân
b) Gọi P, Q lần lượt là trung điểm BE, CD. Cho BC=12cm. Tính ED, PQ
c) Gọi I là giao điểm của CE và PQ. Cm AB//ID
d) Trên cạnh BC lấy K sao cho BK=2/3 BC. Cm A,I,K thẳng hàng
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM
=
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu củ
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQMa A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc A
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM
QM
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM
tóm lị là ABGHMN là sai
Cho tam giác ABC có AB < AC , các đường phân giác AD, BE lần lượt của góc A, góc B cắt nhau tại I. Gọi G là trọng tâm của tam giác ABC ( M là trung điểm của BC ).Có AB= 12cm, AC= 18cm, BC = 15cm.
Chứng minh IG//BC.
Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
=>BD/2=CD/3=(BD+CD)/(2+3)=15/5=3
=>BD=6cm và CD=9cm
Xét ΔBAD có BI là phân giác
nên AI/ID=AB/BD=2
=>AI/AD=2/3=AG/AM
=>IG//BC
Cho tam giác ABC có AB < AC , các đường phân giác AD, BE lần lượt của góc A, góc B cắt nhau tại I. Gọi G là trọng tâm của tam giác ABC ( M là trung điểm của BC ).Có AB= 12cm, AC= 18cm, BC = 15cm.
Chứng minh IG//BC.
Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
=>BD/2=CD/3=(BD+CD)/(2+3)=15/5=3
=>BD=6cm và CD=9cm
Xét ΔBAD có BI là phân giác
nên AI/ID=AB/BD=2
=>AI/AD=2/3=AG/AM
=>IG//BC
Giải giúp mik vs ạ
Thank you ♥️
Cho tam giác ABC có AB = 12cm, AC = 16 cm, BC = 20 cm. 1. Tam giác ABC là tam giác gì? 2. Lấy M, N lần lượt trên AB, AC sao cho AM = 3cm, AN = 4cm. CMR: MN // BC 3. Gọi I là trung điểm BC. G là giao điểm của AI và MN. CMR: G là trung điểm MN
Cho tam giác ABC vuông tại A, biết AB=12cm, AC=16cm. Gọi M,M lần lượt là trung điểm của AB,AC a) Tính độ dài BC, MN b) Vẽ trung tuyến AI của tam giác ABC (I thuộc BC). Chứng minh tứ giác MNCI là hình bình hành c) Gọi D là giao điểm đối xứng của A qua I. Chứng minh tứ giac ABDC là hình chữ nhật d) Gọi K là giao điểm DB và NM. Chứng minh KA=DN
Cho tam giác ABC có AB=AC = 10cm, BC = 12cm. Kẻ A H ⊥ B C tại H.
a) Chứng minh rằng ∆ A B H = ∆ A C H . Từ đó suy ra H là trung điểm của đoạn thẳng BC.
b) Tính độ dài đoạn thẳng AH.
c) Kẻ H I ⊥ A B tại I và H K ⊥ A C tại K. Vẽ các điểm D và E sao cho I, K lần lượt là trung điểm của HD và HE. Chứng minh: AE = AH
d) Tam giác ADE là tam giác gì? Vì sao? Chứng minh DE // BC.
e) Tìm điều kiện của tam giác ABC để A là trung điểm của DE.
Cho tam giác ABC có AB= AC =10cm, BC=12cm,kẻ AH vuông góc vs BC tại H 1. Chứng minh tam giác ABH=ACH và H là trung điểm của BC 2. Tính AH? 3. Kẻ IH vuông góc vs AB tại I, kẻ HK vuông góc vs AC tại K. Vẽ các điểm D và E sao cho I và K lần lượt là trung điểm của HD và HE. Chứng minh AE=AH 4. Tam giác ADE là tam giác gì? Vì sao? 5. Chứng minh DE song song vs BC 6. Tam giác ABC cần thỏa mãn điều kiện gì để A là trung điểm của DE Giải giúp mình với cám ơn!!!
1: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
Do đó: ΔABH=ΔACH
Suy ra: BH=CH
hay H là trung điểm của BC
2: BH=CH=BC/2=6cm
=>AH=8cm
3: Xét ΔAHE có
AK là đường cao
AK là đường trung tuyến
Do đó:ΔAHE cân tại A
hay AH=AE(1)
4: Xét ΔADH có
AI là đường cao
AI là đường trung tuyến
Do đó:ΔADH cân tại A
=>AD=AH(2)
Từ (1) và (2)suy ra AD=AE
hay ΔADE cân tại A
Cho tam giác ABC (AC>AB). Đường tròn tâm I nội tiếp tam giác đó và tiếp xúc với AB,BC tại D,E. Gọi M,N lần lượt là trung điểm AC,BC. Gọi K là giao điểm của MN và AI. CMR: 4 điểm I,E,K,C cùng nằm trên một đường tròn