Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
super saiyan vegeto
Xem chi tiết
KAKA NGÔ
Xem chi tiết
Thắng Nguyễn
31 tháng 3 2016 lúc 20:05

Ta có : A = n2(n2 +2n + 1) + ( n2 + 2n + 1) = (n2+1).(n+1)2
Vì n2 + 1 không phải là số chính phương nên A không phải là số chính phương.

Hoàng Ngọc Tuyết Nung
Xem chi tiết
Hoàng Tiến Đạt
Xem chi tiết
Trương Thanh Nhân
18 tháng 6 2019 lúc 16:06

\(n^4+2n^3+2n^2+2n+1=\left(n^4+2n^3+n^2\right)+\left(n^2+2n+1\right)=\left(n^2+1\right)\left(n+1\right)^2\)

shitbo
18 tháng 6 2019 lúc 16:12

Voi n=0 

=>n4+2n3+2n2+2n+1=1=12

tth_new
18 tháng 6 2019 lúc 16:37

Em xin mạn phép sửa đề: Chứng minh với mọi số nguyên n thì A (là cái biểu thức bên trên) luôn không âm.

Ta có: \(A=n^2\left(n+1\right)^2+\left(n+1\right)^2=\left(n+1\right)^2\left(n^2+1\right)\ge0\)

Suy ra đpcm.

Khuê Đào Mai
Xem chi tiết
Ghost Demons
Xem chi tiết
Ice Wings
26 tháng 7 2016 lúc 15:05

Vì d là ước nguyên dương của 2n2 => d.q= 2n2

=> n2= d.q:2

Ta có: n2+d= d.q:2+d

=> n2+d= d.(q:2+1)

Vậy n2+d không phải là số chính phương                   ĐPCM

Nguyễn Tiến Đạt
17 tháng 9 2019 lúc 21:23

này các bn oi cho mk hoi

tại sao \(d\left(\frac{q}{2}+1\right)\)ko là số cp

Jepz Ki
17 tháng 9 2019 lúc 21:29

Tớ học lớp 6 ko biét làm

Ok

Ahhii

Trần Thj Thu Hiền
Xem chi tiết
Minh Triêt Nguyễn
22 tháng 1 2015 lúc 22:29

Bài này hay thật mình thì chỉ nghĩ ra mỗi cách này. Nhưng ko biết vs học phô thông thì tư duy thế nào

 1 số chính phương có tận cùng bằng 0,1,4,5,6,9
N+1 tận cùng =9=> n tận cùng bằng 8 => 2n+1 tận cùng =7 => loại
(2n+1)-(n+1)=n=a^2-b^2=(a-b)(a+b)
2n+1 là số lẻ => a lẻ
N chẵn=> b chẵn
1 số chính phương chia cho 4 dư 0 hoặc 1 => (a+b)(a-b) chia hết cho 8

Còn nó chia hết cho 3 hay không thì phải dùng định lý của fermat đẻ giải 

http://en.wikipedia.org/wiki/Fermat%27s_little_theorem

như vậy chưng minh no chia het cho 8 và 3 là có thể két luạn nó chia hêt cho 24

cao thành sơn
21 tháng 6 2020 lúc 21:24

ùi hơi khó thế này thì có làm đc ko

Khách vãng lai đã xóa
Phùng Thị Phương Anh
Xem chi tiết
Nguyễn Trần Duy Thiệu
Xem chi tiết
Nguyễn Linh Chi
3 tháng 4 2020 lúc 16:38

1. Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath

Khách vãng lai đã xóa