1.Cho n là số nguyên dương,biết rằng 2n+1 và 3n+1 là 2 số chính phương.Cm \(n⋮40\)
2.Tìm số nguyên tố p để \(1+p+p^2+p^3+p^4\) là số chính phương
3.Cmr nếu n+1 và 2n+1 đều là số chính phương thì \(n⋮24\)
Cho n là một số tự nhiên lớn hơn 1. CMR \(n^6+2n^3-n^4+2n^2\) không là số chính phương
Tìm số nghiệm nguyên dương \(\left(x;y\right)\) của phương trình \(x^2-y^2=100\cdot110^{2n}\) với \(n\) nguyên dương cho trước. CMR số nghiệm này không thể là số chính phương
Cho \(n\in N\), p là số nguyên tố và \(a=\dfrac{2n+2}{p};b=\dfrac{4n^2+2n+1}{p}\)là các số nguyên. CMR a,b không đồng thời chính phương
CMR với mọi số nguyên dương n, ta luôn có đẳng thức sau :
\(2^2+4^2+...+\left(2n\right)^2=\frac{2n\left(n+1\right)\left(2n+1\right)}{3}\)
tìm nghiệm nguyên dương của phương trình: \(n^4+2n^3+2n^2+n+7\) là số chính phương
tìm nghiệm nguyên dương của phương trình: \(n^4+2n^3+2n^2+n+7\) là số chính phương
Cho n là số nguyên dương. Chứng minh rằng: 2n+1 và 3n+1 là các số chính phương thì 5n+3 không là số nguyên tố.
Cho n số nguyên dương. Gọi k(1), k(2),...k(i) là ước nguyên dương của n.Giả sử k(1)+k(2)+...+k(i)+i=2n+1
CMR: n/2 là sô chính phương