\(20x^5:\left(-12x\right)\)
\(6x^3y:\left(-9x^2\right)\)
Rút gọn các phân thức:
a)\(\dfrac{14xy^5\left(2x-3y\right)}{21x^2y\left(2x-3y\right)^2}\) b)\(\dfrac{8xy\left(3x-1\right)^3}{12x^3\left(1-3x\right)}\)
c) \(\dfrac{20x^2-45
}{\left(2x+3\right)^2}\) d) \(\dfrac{5x^2-10xy}{2\left(2y-x\right)^3}\)
\(a,=\dfrac{2y^4}{3x\left(2x-3y\right)}\\ b,=-\dfrac{2y\left(3x-1\right)^2}{3x^2}\\ c,=\dfrac{5\left(4x^2-9\right)}{\left(2x+3\right)^2}=\dfrac{5\left(2x-3\right)\left(2x+3\right)}{\left(2x+3\right)^2}=\dfrac{5\left(2x-3\right)}{2x+3}\\ d,=\dfrac{5x\left(x-2y\right)}{-2\left(x-2y\right)^3}=-\dfrac{5x}{2\left(x-2y\right)^2}\)
giải pt:
a,\(\left(13-4x\right)\sqrt{2x-3}+\left(4x-3\right)\sqrt{5-2x}=2+8\sqrt{-4x^2+16x-15}\)
b,\(\left(9x-2\right)\sqrt{3x-1}+\left(10-9x\right)\sqrt{3-3x}-4\sqrt{-9x^2+12x-3}=4\)
c, \(\left(6x-5\right)\sqrt{x+1}-\left(6x+2\right)\sqrt{x-1}+4\sqrt{x^2-1}=4x-3\)
giải pt :
a,\(\left(6x-5\right)\sqrt{x+1}-\left(6x+2\right)\sqrt{x-1}+4\sqrt{x^2-1}=4x-3\)
b, \(\left(9x-2\right)\sqrt{3x-1}+\left(10-9x\right)\sqrt{3-3x}-4\sqrt{-9x^2+12x-3}=4\)
c, \(\left(13-4x\right)\sqrt{2x-3}+\left(4x-3\right)\sqrt{5-2x}=2+8\sqrt{-4x^2+16x-15}\)
Làm phép chia bằng cách áp dụng hằng đẳng thức:
a) \(\left(x^8-2x^4y^4+y^8\right):\left(x^2+y^2\right)\)
b) \(\left(64x^3+27\right):\left(16x^2-12x+9\right)\)
c) \(\left(x^3-9x^2+27x-27\right):\left(x^2-6x+9\right)\)
d) \(\left(x^3y^6z^9-1\right):\left(xy^2z^3-1\right)\)
a: \(=\dfrac{\left(x^4-y^4\right)^2}{x^2+y^2}=\left(x^2-y^2\right)^2\cdot\left(x^2+y^2\right)\)
b: \(=\dfrac{\left(4x+3\right)\left(16x^2-12x+9\right)}{16x^2-12x+9}=4x+3\)
Tính
a. \(6x^2.\left(3x^2-4x+5\right)\)
b.\(\left(x-2y\right)\left(3xy+6y^2+x\right)\)
c.\(\left(18x^4y^3-24x^3y^4+12x^3y^3\right):\left(-6x^2y^3\right)\)
a) 6x2.(3x2 - 4x + 5) = 18x4 - 24x3 + 30x2
b) (x - 2y)(3xy + 6y2 + x) = 3x2y + 6xy2 + x2 - 6xy2 - 12y3 - 2xy = -12y3 + 3x2y - 2xy + x2
c) (18x4y3 - 24x3y4 + 12x3y3) : (-6x2y3) = -6x2y3(-3x2 + 4xy - 2x) : (-6x2y3) = 4xy - 3x2 - 2x
thực hiện phép tính:
a,\(\left(9x^2y^3-15x^4y^4\right):3x^2y-\left(2-3x^2y\right)y^2\)
b,\(\left(6x^2-xy\right):x+\left(2x^3y+3xy^2\right):xy-\left(2x-1\right)x\)
c,\(\left(x^2-xy\right):x-+\left(6x^2y^5-9x^3y^4+15x^4y^2\right):\dfrac{3}{2}x^2y^3\)
thực hiện phép tính:
a,\(\left(9x^2y^3-15x^4y^4\right):3x^2y-\left(2-3x^2y\right)y^2\)
b,\(\left(6x^2-xy\right):x+\left(2x^3y+3xy^2\right):xy-\left(2x-1\right)x\)
c,\(\left(x^2-xy\right):x-+\left(6x^2y^5-9x^3y^4+15x^4y^2\right):\dfrac{3}{2}x^2y^3\)
a: \(=3y^2-5x^2y^3-2y^2+3x^2y^3=y^2-2x^2y^3\)
b: \(=6x-y+2x^2+3y^2-2x^2+x=7x-y+3y^2\)
c: \(=x-y+4y^2-6xy+\dfrac{10x^2}{y}\)
thực hiện phép tính:
a,\(\left(9x^2y^3-15x^4y^4\right):3x^2y-\left(2-3x^2y\right)y^2\)
b,\(\left(6x^2-xy\right):x+\left(2x^3y+3xy^2\right):xy-\left(2x-1\right)x\)
c,\(\left(x^2-xy\right):x-+\left(6x^2y^5-9x^3y^4+15x^4y^2\right):\dfrac{3}{2}x^2y^3\)
\(a.\left(9x^2y^3-15x^4y^4\right):3x^2y-\left(2-3x^2y\right)y^2\)
\(=3y^2-5x^2y^3-2y^2+3x^2y^3\)
\(=y^2-2x^2y^3\)
\(b.\left(6x^2-xy\right):x+\left(2x^3y+3xy^2\right):xy-\left(2x-1\right)x\)
\(=6x-y+2x^2+3y-2+x\)
\(=2x^2+7x+2y-2\)
\(c.\left(x^2-xy\right):x+\left(6x^2y^5-9x^3y^4+15x^4y^3\right):\dfrac{3}{2}x^2y^3\)
\(=x-y+4y^2-6xy+10x^2\)
Tìm giá trị các đa thức sau :
\(1.F=21x^8-24x^6+9x^5+3x^3+6x^2+2006\)biết \(7x^6-8x^4+3x^3+x+2=0\)
\(2.H=7x^5+8x^3y^2+35x^3y^3+40xy^5+19\)biết \(x^2+5y^3=0\)
\(3.M=x^6-20x^5+20x^4-20x^3+20x^2-20x+20\)biết x = 19
\(4.P=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)biết x + y + z = 0 và x,y,z khác 0
\(5.Q=5x^{10}-y^{15}+2007\)biết \(\left(x+1\right)^{2006}+\left(y-1\right)^{2008}=0\)
MN GIẢI GIÚP MIK VỚI MIK CẦN GẤP