x^4-100*x^3+100*x^2-100*x+9099
100/1 x 2 + 100/2 x 3 + 100/3 x 4 +...+100/99 x 100
A=100/1 x 2 + 100/2 x 3 + 100/3 x 4 +...+100/99 x 100
A/100=1/1 x 2 + 1/2 x 3 + 1/3 x 4 +...+1/99 x 100
A/100=2-1/1x2 + 3-2/2x3 + ... + 100-99/99x100
A/100=1-1/2 + 1/2-1/3+...+1/99-1/100
A/100=1-1/100
A/100=99/100
A=99/100x100=99
Vậy A=99.
Ta có:
\(\frac{100}{1.2}+\frac{100}{2.3}+\frac{100}{3.4}+...+\frac{100}{99.100}\)
\(\Rightarrow100.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)
\(\Rightarrow100.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(\Rightarrow100.\left(\frac{1}{1}-\frac{1}{100}\right)\Leftrightarrow100.\frac{99}{100}=99\)
\(\text{Ta có :}\)
\(\frac{100}{1.2}+\frac{100}{2.3}+\frac{100}{3.4}+...+\frac{100}{99.100}\)
\(=100.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(100.\left(\frac{1}{1}-\frac{1}{100}\right)=100.\frac{99}{100}=99\)
100 x 1 = ?
100 x 2 = ?
100 x 3 = ?
100 x 4 = ?
100 x 5 = ?
100.1=100
100.2=200
100.3=300
100.4=400
100.5=500
100 x 1 = 100
100 x 2 = 200
100 x 3 = 300
100 x 4 = 400
100 x 5 = 500
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
100 x 1 =
100 x 2 =
100 x 3 =
100 x 4 =
100 x 5 =
100 x 6 =
100 x 7 =
100 x 8 =
100 x 9 =
100 x 1 = 100
100 x 2 = 200
100 x 3 = 300
100 x 4 = 400
100 x 5 = 500
100 x 6 = 600
100 x 7 = 700
100 x 8 = 800
100 x 9 = 900
k cho mình nha các bạn và kết bạn nữa
100 x 1 = 100
100 x 2 = 200
100 x 3 = 300
100 x 4 = 400
100 x 5 = 500
100 x 6 = 600
100 x 7 = 700
100 x 8 = 800
100 x 9 = 900
Tính:
a.[100/3]+[100/3^2]+[100/3^3]+[100/3^4]
b.[50/2]+[50/2^2]+[50/2^3]+[50/2^4]+[50/2^5]
c.[x]+[x+2/3]+[x+4/3]+[x+7/3]+[x+10/3] với x=-2,7
4 x 2 : 2 x 3 : 3 x 4 : 4 x........x 100 : 100 + 6 x 1 : 1 x 2 : 2 x 3 : 3 x 4 : 4 x........x 1000 : 1000 x4
giúp nhanh
b) 200 x 4 = ...... 300 x 2 = ......
200 x 2 = ...... 300 x 3 = ......
400 x 2 = ...... 500 x 1 = ......
100 x 4 = ...... 100 x 3 = ......
b) 200 x 4 = .800..... 300 x 2 = ..600....
200 x 2 = .400..... 300 x 3 = ...900...
400 x 2 = ...800... 500 x 1 = ..500....
100 x 4 = ..400.... 100 x 3 = .300.....
1 x 2 + 2 x 3 + 3 x 4 + ... + 100 x 101 =
1 x 2 x 3 + 2 x 3 x 4 + ... + 100 x 101 x 102
Có cả lời giải nhé
a: S=1(1+1)+2(1+2)+...+100(1+100)
=1+2+...+100+1^2+2^2+...+100^2
\(=\dfrac{100\cdot102}{2}+\dfrac{100\cdot\left(100+1\right)\cdot\left(2\cdot100+1\right)}{6}\)
\(=100\cdot51+\dfrac{100\cdot101\cdot201}{6}\)
=343450
b: \(A=1\cdot2\cdot3+2\cdot3\cdot4+...+100\cdot101\cdot102\)
=>\(4\cdot A=1\cdot2\cdot3\cdot\left(4-0\right)+2\cdot3\cdot4\left(5-1\right)+...+100\cdot101\cdot102\left(103-99\right)\)
=>4*A=100*101*102*103
=>A=25*101*102*103
A.(x+1)+(x+2)+(x+3)+......(x+100)=5750
B. x+(1+2+3+4+5+..........+100)=2000
C.(x-1)+(x-2)-(x-3)+(x-4)+........(x-100)=50
Giúp mình với ạ mai mình phải nộp bài rồi
A. \(\left(x+1\right)+\left(x+2\right)+......+\left(x+100\right)=5750\)
\(x+1+x+2+....+x+100=5750\)
\(100x+\left(1+2+3+.......+100\right)=5750\)
\(100x+5050=5750\)
\(100x=700\)
\(x=700:100=7\)
B. x+(1+2+......+100) = 2000
x + 5050 = 2000
x = 2000 - 5050
x= -3050
C. ( x-1 )+(x-2)+......+( x - 100 ) = 50
x-1+x-2+.........+x-100 = 50
100x + ( -1-2-........-100 ) = 50
100x + ( - 5050 ) = 50
100x = 50 + 5050
100 x = 5100
x = 5100 : 100
x = 51
A . \(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+100\right)=5750\)
\(\left(x+x+x+...+x\right)+\left(1+2+3+...+100\right)=5750\)
\(100x+5050=5750\)
\(100x=5750-5050\)
\(100x=700\)
\(\Rightarrow x=\frac{700}{100}=7\)
B. \(x+\left(1+2+3+4+5+....+100\right)=2000\)
\(x+\frac{\left(100+1\right).100}{2}=2000\)
\(x+5050=2000\)
\(\Rightarrow x=2000-5050=-3050\)
C. \(\left(x-1\right)+\left(x-2\right)+\left(x-3\right)+....+\left(x-100\right)=50\)
\(\left(x+x+x+...+x\right)-\left(1+2+3+...+100\right)=50\)
\(100x-5050=50\)
\(100x=5100\)
\(\Rightarrow x=\frac{5100}{100}=51\)
Bài 6 Tìm x
1) ( x+1 ) + ( x+2 ) + ( x+3 ) + ... + ( x+100 ) = 5750
2) ( 2x-1 ) + ( 4x-2 ) + ... + ( 200x - 100 ) = 5050
3) ( x+2 ) + ( x+4 ) + ( x+6 ) + ... + ( x + 100) = 2650