Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Huỳnh Xuân Mai
Xem chi tiết
Cố Tử Thần
22 tháng 1 2019 lúc 17:28

điều kiện 2x-5+3 >=0 và 2x-5-1>=0

<=>x>=1 và x>=3

=> x>=1

từ pt đã cho ta có

căn 2x-5+6(2x-5)+9 + căn 2x-5-2(2x-5)+1 = 4

<=>(2x-5+3)+(2x-5-1)=4

<=>4x-8=4

<=> 4x=12

<=>x=3(TMDKXD)

vậy x=3

Incursion_03
22 tháng 1 2019 lúc 17:34

\(ĐKXĐ:x\ge\frac{5}{2}\)

Ta có: \(\sqrt{2x+4+6\sqrt{2x-5}}+\sqrt{2x-4-2\sqrt{2x-5}}=4\)

\(\Leftrightarrow\sqrt{2x-5+6\sqrt{2x-5}+9}+\sqrt{2x-5-2\sqrt{2x-5}+1}=4\)

\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}+3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\)

\(\Leftrightarrow\left|\sqrt{2x-5}+3\right|+\left|\sqrt{2x-5}-1\right|=4\)

\(\Leftrightarrow\left|\sqrt{2x-5}+3\right|+\left|1-\sqrt{2x-5}\right|=4\)(1)

Có : \(VT\ge\left|\sqrt{2x-5}+3+1-\sqrt{2x-5}\right|=4\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{2x-5}+3\ge0\\1-\sqrt{2x-5}\ge0\end{cases}\Leftrightarrow-3\le\sqrt{2x-5}\le1}\)

                                

                                                                             \(\Leftrightarrow0\le2x-5\le1\)

                                                                              \(\Leftrightarrow5\le2x\le6\)

                                                                             \(\Leftrightarrow\frac{5}{2}\le x\le3\)

KẾt hợp với ĐKXĐ được \(\frac{5}{2}\le x\le3\)

Vậy pt có nghiệm nằm trong khoảng \(\frac{5}{2}\le x\le3\)

Lê Nguyễn Ngân Nhi
Xem chi tiết
biii
Xem chi tiết
Uyên Phạm
15 tháng 3 2021 lúc 21:06

undefined

Lê Hương Giang
Xem chi tiết
Tử Nguyệt Hàn
24 tháng 8 2021 lúc 18:05

\(\sqrt{x^{ }2-6x+9}=4-x\)
\(\sqrt{\left(x-3\right)^{ }2}=4-x\)
x-3=4-x
x+x=4+3
2x=7
x=\(\dfrac{7}{2}\)

Akai Haruma
24 tháng 8 2021 lúc 18:18

Lời giải:
a.

PT \(\Leftrightarrow \left\{\begin{matrix} 4-x\geq 0\\ x^2-6x+9=(4-x)^2=x^2-8x+16\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\leq 4\\ 2x=7\end{matrix}\right.\Leftrightarrow x=\frac{7}{2}\)

b.

ĐKXĐ: $x\geq \frac{3}{2}$

PT \(\Leftrightarrow \sqrt{(2x-3)+2\sqrt{2x-3}+1}+\sqrt{(2x-3)+8\sqrt{2x-3}+16}=5\)

\(\Leftrightarrow \sqrt{(\sqrt{2x-3}+1)^2}+\sqrt{(\sqrt{2x-3}+4)^2}=5\)

\(\Leftrightarrow |\sqrt{2x-3}+1|+|\sqrt{2x-3}+4|=5\)

\(\Leftrightarrow \sqrt{2x-3}+1+\sqrt{2x-3}+4=2\sqrt{2x-3}+5=5\)

\(\Leftrightarrow \sqrt{2x-3}=0\Leftrightarrow x=\frac{3}{2}\)

Nguyễn Lê Phước Thịnh
24 tháng 8 2021 lúc 23:56

a: Ta có: \(\sqrt{x^2-6x+9}=4-x\)

\(\Leftrightarrow\left|x-3\right|=4-x\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=4-x\left(x\ge3\right)\\x-3=x-4\left(x< 3\right)\left(loại\right)\end{matrix}\right.\)

\(\Leftrightarrow2x=7\)

hay \(x=\dfrac{7}{2}\left(nhận\right)\)

Nguyễn Thế Hiếu
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 2 2021 lúc 20:00

Do \(x^6-x^3+x^2-x+1=\left(x^3-\dfrac{1}{2}\right)^2+\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{2}>0\) ; \(\forall x\) nên BPT tương đương:

\(\sqrt{13}-\sqrt{2x^2-2x+5}-\sqrt{2x^2-4x+4}\ge0\)

\(\Leftrightarrow\sqrt{4x^2-4x+10}+\sqrt{4x^2-8x+8}\le\sqrt{26}\) (1)

Ta có:

\(VT=\sqrt{\left(2x-1\right)^2+3^2}+\sqrt{\left(2-2x\right)^2+2^2}\ge\sqrt{\left(2x-1+2-2x\right)^2+\left(3+2\right)^2}=\sqrt{26}\) (2)

\(\Rightarrow\left(1\right);\left(2\right)\Rightarrow\sqrt{4x^2-4x+10}+\sqrt{4x^2-8x+8}=\sqrt{26}\)

Dấu "=" xảy ra khi và chỉ khi \(2\left(2x-1\right)=3\left(2-2x\right)\Leftrightarrow x=\dfrac{4}{5}\)

Vậy BPT có nghiệm duy nhất \(x=\dfrac{4}{5}\)

Nguyễn Thu Băng
Xem chi tiết
Ngô Chi Lan
26 tháng 8 2020 lúc 10:16

Bài làm:

đk: \(x\ge3\)

Pt <=> \(\left(\sqrt{x-\sqrt{2x-5}-4}+\sqrt{x+\sqrt{2x-5}-4}\right)^2=\left(\sqrt{2}\right)^2\)

<=> \(x-\sqrt{2x-5}-4+x+\sqrt{2x-5}-4+2\sqrt{\left(x-4\right)^2-2x+5}=2\)

<=> \(2x-10=-2\sqrt{x^2-4x+4-2x+5}\)

<=> \(2x-10+2\sqrt{x^2-6x+9}=0\)

<=> \(2x-10+2\sqrt{\left(x-3\right)^2}=0\)

<=> \(2\left|x-3\right|=10-2x\)

<=> \(\left|x-3\right|=5-x\Leftrightarrow\orbr{\begin{cases}x-3=5-x\\x-3=x-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=8\\0x=-2\left(∄x\right)\end{cases}\Rightarrow}x=4\)

Khách vãng lai đã xóa
Lee Yeong Ji
Xem chi tiết
Nguyễn Khánh Nhi
Xem chi tiết
Nguyễn Hoàng Minh
15 tháng 9 2021 lúc 14:16

\(1,\sqrt{x+2+4\sqrt{x-2}}=5\left(x\ge2\right)\\ \Leftrightarrow\sqrt{\left(\sqrt{x-2}+4\right)^2}=5\\ \Leftrightarrow\sqrt{x-2}+4=5\\ \Leftrightarrow\sqrt{x-2}=1\\ \Leftrightarrow x-2=1\Leftrightarrow x=3\\ 2,\sqrt{x+3+4\sqrt{x-1}}=2\left(x\ge1\right)\\ \Leftrightarrow\sqrt{\left(\sqrt{x-1}+4\right)^2}=2\\ \Leftrightarrow\sqrt{x-1}+4=2\\ \Leftrightarrow\sqrt{x-1}=-2\\ \Leftrightarrow x\in\varnothing\left(\sqrt{x-1}\ge0\right)\)

\(3,\sqrt{x+\sqrt{2x-1}}=\sqrt{2}\left(x\ge\dfrac{1}{2};x\ne1\right)\\ \Leftrightarrow x+\sqrt{2x-1}=2\\ \Leftrightarrow x-2=-\sqrt{2x-1}\\ \Leftrightarrow x^2-4x+4=2x-1\\ \Leftrightarrow x^2-6x+5=0\\ \Leftrightarrow\left(x-5\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\left(tm\right)\\x=1\left(loại\right)\end{matrix}\right.\)

\(4,\sqrt{x-2+\sqrt{2x-5}}=3\sqrt{2}\left(x\ge\dfrac{5}{2}\right)\\ \Leftrightarrow\sqrt{2x-4+2\sqrt{2x-5}}=6\\ \Leftrightarrow\sqrt{\left(\sqrt{2x-5}+1\right)^2}=6\\ \Leftrightarrow\sqrt{2x-5}+1=6\\ \Leftrightarrow\sqrt{2x-5}=5\\ \Leftrightarrow2x-5=25\Leftrightarrow x=15\left(TM\right)\)

Phạm Thị Mai Thi
Xem chi tiết