Chứng minh tích 4 số tự nhiên liên tiếp thì chia hết cho 4.
Cần ny 2k4, học tốt
1 cho abc-deg chia hết cjo 7
a, chứng minh rằng abcdeg chia hết 7
2 a, chứng minh rằng ; Tích của ba số tự nhiên liên tiếp thì chia hết cho 3 và cho 2
b, chứng minh ; Tích của 4 số tự nhiên liên tiếp luôn chia hết cho 4
c, chứng minh (n+3).(n+4).(2n+7) chia hết cho 3
Chứng tỏ rằnga) Tổng của 2 số lẻ liên tiếp thì chia hết cho 4.b) Tích của 2 số tự nhiên liên tiếp thì chia hết cho 2.c) Tích của 3 số tự nhiên liên tiếp thì chia hết cho 6.d) Tích của 4 số tự nhiên liên tiếp thì chia hết cho 24.e) Tích của 5 số tự nhiên liên tiếp thì chia hết cho 120.
ousbdl
jvdajnvjl
nsdg
ouhqer
kgkrebvjdsjb
vq
wjkgb
Fbovafbeuonasf
a)Chứng minh rằng tổng của 3 số tự nhiên liên tiếp thì chia hết cho 3.
b)Chứng minh rằng tổng của 4 số tự nhiên liên tiếp thì chia hết cho 4.
a)gọi 3 số tự nhiên liên tiếp đó là :
k;k+1;k+2
tổng 3 số tự nhiên liên tiếp đó là: k+k+1+k+2
ta có
k+k+1+k+2
\(\Leftrightarrow\)k+(k+1)+(k+2)
\(\Leftrightarrow\)k.3+(1+2)
\(\Leftrightarrow\)k.3+3
vì k.3 chia hết cho 3 và 3 chia hết cho 3 nên k.3+3
\(\Rightarrow\)k+k+1+k+2 chia hết cho 3
Vậy tổng 3 số tự nhiên liên tiếp chia hết cho 3
b) gọi 4 số tự nhiên liên tiếp đó 4 là:
4;4+1;4+2;4+3
tổng của 4 số tự nhiên liên tiếp 4 là
k+k+1+k+2+k+3
ta có
k+k+1+k+2+k+3
\(\Leftrightarrow\)k+(k+1)+(k+2)+(k+3)
\(\Leftrightarrow\)k.4+(1+2+3)
\(\Leftrightarrow\)k.4+6
vì k.4 chia hết cho 4 nhưng 6 không chia hết cho 4 nên k.4+6 không chia hết cho 4
\(\Rightarrow\) k+k+1+k+2+k+3 không chia hết cho 4
vậy tổng 4 số tự nhiên ko chia hết cho 4
OH SORY BẠN VÌ CÂU b) MÌNH CHỈ LÀM ĐƯỢC CHỨNG MINH RẰNG TỔNG 4 SỐ TỰ NHIÊN LIÊN TIẾP KHÔNG CHIA HẾT CHO 4 THÔI
VÀ MK NGHĨ CÂU B ĐỀ SAi
chứng minh rằng tích của 4 số tự nhiên liên tiếp thì chia hết cho 24
Tích của 4 số tự nhiên liên tiếp thì chắc chắn có 2 số chẵn liên tiếp.
Trong 2 số chẵn liên tiếp chắc chắn có 1 số chia hết cho 4, số còn lại chia hết cho 2 bằng tích 4 số tự nhiên liên tiếp chia hết cho 8.(1) Trong 4 số tự nhiên liên tiếp chắc chẵn có 1 số chia hết cho 3 (2) Từ (1) và (2) ➩ Tích 4 số tự nhiên liên tiếp chia hết cho 3 và 8. Mà 3 và 8 nguyên tố cùng nhau => tích 4 số tự nhiên liên tiếp chia hết cho 24 ( = 8.3) Áp dụng tính chất: Nếu a chia hết cho b; a chia hết cho c và b và c nguyên tố cùng nhau => a chia hết cho (b.c) + 2 số nguyên tố cùng nhau là 2 số có ƯCLN là 1
Trong 4 số tự nhiên liên tiếp
Luôn có 1 số chia hết cho 4
Luôn có 1 số chia hết cho 3
Luôn có một số chia hết cho 2
Luôn có 1 số chia hết cho 1
=> tích của chúng chia hết cho 4.3.2.1 = 24 (đpcm)
Chứng minh rằng tổng của 3 số tự nhiên liên tiếp thì chia hết cho 3 còn tổng của 4 số tự nhiên liên tiếp thì không chia hết cho 4
Gọi 3 só tự nhiên liên tiếp là
a ; a + 1 ; a + 2
Khi đó a + (a + 1) + (a + 2) = 3a + 6 = 3(a + 2) \(⋮\)3 (đpcm)
Gọi 4 số tự nhiên liên tiếp là :
n ; n + 1 ; n + 2 ; n + 3
Khi đó n + n + 1 + n + 2 + n + 3 = 4n + 6 = 4(n + 1) + 2
=> n + n + 1 + n + 2 + n + 3 không chia hết cho 4 (đpcm)
Gọi 3 số tự nhiên liên tiếp là n; n+1; n+2
\(\Rightarrow n+n+1+n+2=3\left(n+1\right)⋮3\)
Gọi 4 số tự nhiên liên tiếp là n; n+1; n+2; n+3
\(\Rightarrow n+n+1+n+2+n+3=4\left(n+1\right)+2\)
Ta có \(4\left(n+1\right)⋮4\) ; 2 không chia hết cho 4
\(\Rightarrow4\left(n+1\right)+2\) không chia hết cho 4
Chứng minh rằng tổng của 3 số tự nhiên liên tiếp thì chia hết cho 3 còn tổng của 4 số tự nhiên liên tiếp thì không chia hết cho 4
Gọi 3 STN liên tiếp là : a ; a + 1 ; a + 2
Tổng 3 STN liên tiếp là :
\(a+\left(a+1\right)+\left(a+2\right)=3a+3⋮3\)
Vậy tổng của 3 STN liên tiếp thì chia hết cho 3
Gọi 4 STN liên tiếp là : b ; b + 1 ; b + 2 ; b + 3
Tổng 4 STN liên tiếp là :
\(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)=4a+6\)
mà 4a + 6 không chia hết cho 4
Vậy tổng của 4 STN liên tiếp thì không chia hết cho 4
chứng minh rằng tổng của 3 số tự nhiên liên tiếp thì chia hết cho 3 còn tổng của 4 số tự nhiên liên tiếp thì khoong chia hết cho 4 .
Gọi 3 stn liên tiếp là a; a+1; a+2.
Ta có: a + (a+1) + (a+2) = a + a + 1 + a + 2 = 3a + 3 = 3.(a+1) chia hết cho 3.
Gọi 4 stn liên tiếp là a; a+1; a+2; a+3.
Ta có: a + (a+1) + (a+2) + (a+3) = a+a+1+a+2+a+3=4a+6=4a+4+2=4.(a+1)+2 chia 4 dư 2 nên không chia hết cho 4
Vậy...
Chứng minh rằng:
a) Tích của ba số tự nhiên liên tiếp luôn chia hết cho 3.
b) Tích của bốn số tự nhiên liên tiếp luôn chia hết cho 4
Chứng minh rằng tổng của 3 số tự nhiên liên tiếp thì chia hết cho 3 còn 4 số tự nhiên liên tiếp thì khôg chia hết cho 4
a) Gọi a,a+1,a+2 là 3 số TN liên tiếp
Theo đề :
a+a+1+a+2 = (a+a+a) + ( 1+2)
=3a + 3 chia hết cho 3
Vậy tổng của 3 số tự nhiên liên tiếp thì chia hết cho 3
b) Gọi n,n+1,n+2,n+3 là 4 số TN liên tiếp
Theo đề :
a+a+1+a+2+a+3 = ( a+a+a+a ) + ( 1+2+3)
= 4a + 6 ko chia hết cho 4
Vậy 4 số tự nhiên liên tiếp thì khôg chia hết cho 4
Gọi 3 số tự nhiên liên tiếp là : a , a + 1, ạ + 2
Ta có :. a + ( a + 1 ) + ( a + 2 ) = a × 3 + 3
3 × ( a + 1 ) chia hết cho 3
Gọi 4 số tự nhiên liên tiếp là : a , a + 1 , a + 2 , a + 3
Ta có : a+(a+1)+(a+2)+(a+3)=a×4+6=4×(a+1)+2 mà 4 × ( a + 1 ) chia hết cho 4 còn 2 ko chia hết cho 4
= [ 4 × ( a + 1 ) + 2 ] ko chia hết cho 4
Ta có ba số tự nhiên liên tiếp : a; a+1; a+2
Tổng của chúng : a + ( a + 1 ) + ( a + 2 ) = ( a + a + a ) + ( 1 + 2 ) = 3a + 3 chia hết cho 3
Vậy tổng của ba số tự nhiên liên tiếp sẽ chia hết cho 3