Cho hình chữ nhật ABCD. Gọi H là đường chiếu của D trên AC, M là trung điểm HC. Đường thẳng vuông góc với DM tại M cắt AB ở I. Chứng minh : AI = BI
1. Cho hcn ABCD . Gọi h là hình chiếu của B tren AC ,M là trung điểm của HC . Đường vuông góc với DM tại M cắt AB ở I .Cmr :AI=IB
Cho hình chữ nhật ABCD, AD<AB, đường thẳng vuông góc với AC tại C cắt AD, AB lần lượt tại M và N. Gọi E là trung điểm của MC. Kẻ Ch vuông góc với BD tại H, BE cắt CH tại K. Chứng minh K là trung điểm của HC.
Cho hình chữ nhật ABCD. Gọi H là hình chiếu của D trên AC. M là trung điểm của HC. Đường thẳng vuông góc với DM tại M cắt AB tại I. Chứng minh rằng IA=IB
Trên đường thẳng cho bốn điểm A B C D theo thứ tự đó và AB = CD M là điểm bất kì không nằm trên đường thẳng AB Chứng minh rằng M A + MD lớn hơn MB + MC
Cho hình chữ nhật ABCD vẽ BH vuông góc với AC H thuộc AC M là trung điểm của AK K là trung điểm của CD Chứng minh rằng BM vuông góc vớiMK
Cho tam giác ABC cân tại A từ điểm D thuộc BC vẽ đường thẳng vuông góc với BC cắt các đường AB AC lần lượt tại E F vẽ các hình chữ nhật b g và c d e f h Chứng minh I là trung điểm của g h
cho tam giác ABC vuông tại A, gọi D là trung điểm của cạnh BC.Lấy điểm M bất kì trên đoạn thẳng AD(M không trùng với A).Gọi N,P theo thứ tự là hình chiếu vuông góc của M xuống AB,AC và H la hình chiếu vuông góc của N xuống đường thẳng PD .
a) Chứng minh AH vuông góc với BH.
b) Đường thẳng qua B song song với AD cắt đường trung trực của AB tại I
chứng minh ba điểm H,N,I thẳng hàng
Cho tam giác ABC vuông tại A ( AB < AC ), đường cao AH. Tren tia HC lấy điểm D sao cho HD = HA, đường vuông góc với BC tại D cắt AC tại E. Gọi I là hình chiếu vuông góc của E trên AH
a, Chứng minh: Tứ giác HDEI là hình chữ nhật
b, Chứng minh: AE = AB
c, Gọi M là trung điểm của BE. Tính số đo của \(\widehat{AHM}\)
Cho tam giác ABC nhọn (AB < AC), O là trung điểm của đường cao AH; D, E lần lượt là hình chiếu của H lên AB, AC. Đường thẳng đi qua D vuông góc với OD cắt đường thẳng đi qua E vuông góc với OE tại I; AI cắt cắt BC tại M. Chứng minh: M là trung điểm của BC
Cho tam giác ABC vuông tại A (AB>AC), M là trung điểm BC. Gọi H là hình chiếu của M trên AC
a) Chứng minh H là trung điểm AC.
b) Từ M kẻ đường thẳng vuông góc với BC cắt AC kéo dài tại F. Chứng minh BC.HM=EM.AC
c) Gọi N là trung điểm MH. Chứng minh góc NEM = góc HBC.
d) Chứng minh BH vuông góc với EN.
P/s. Làm ơn giải chi tiết và vẽ hình giúp ạ. Mai em phải nộp rồi. :((
a) Ta có: HM⊥AC(gt)
AB⊥AC(ΔABC vuông tại A)
Do đó: HM//AB(Định lí 1 từ vuông góc tới song song)
Xét ΔCAB có M là trung điểm của BC(gt)
MH//AB(cmt)
Do đó: H là trung điểm của AC(Định lí 1 về đường trung bình của tam giác)
Cho hình chữ nhật ABCD có AB=2AD. Gọi H là hình chiếu của A trên BD. Trên đoạn BH lấy điểm M sao cho HM=HA. Qua M kẻ đường thẳng vuông góc với BH cắt BA ở N. Chứng minh M là trung điểm của BH.
Cíu!!! Quên hết kiến thức r.