tìm số tự nhiên thỏa mãn:
a là Ư(8)
a chia hết cho 25 và 45 < a < 136
B1) Tìm các B(25) và đồng thời là Ư(300)
B2) Tìm số tự nhiên n thỏa mãn điều kiện:
a) 12 chia hết ( n - 1)
b) 20 chia hết ( 2n + 1)
c) ( 2n + 3) chia hết cho 3
cho a;b là các số tự nhiên thỏa mãn:a+4b chia hết cho 13. chứng minh 10a+b cũng chia hết cho 13
GIÚP MIK VỚI !!!!!!!!!
Có a+4b chia hết cho 13
=> a+13a+4b+13b chia hết cho 13
=> 14a+17b chi hết cho 13
=> 10a+4a+b+16b chia hết cho 13
=> (10a+b)+(4a+16b) chia hết cho 13
=> (10a+b)+4(a+4b) chia hết cho 13
Mà a+4b chia hết cho 13 => 4(a+4b) chia hết cho 13
=> Để (10a+b)+4(a+4b) chia hết cho 13 thì 10a+b chia hết cho 13 (đpcm)
k cho mik nha
Có bao nhiêu số tự nhiên m thỏa mãn:
a) Chia hết cho 2 và 105 ≤ m ≤ 125
b) Chia hết cho 5 và 105 ≤ m ≤ 125
a:Số số hạng thỏa mãn là (124-106):2+1=18:2+1=10 số
b: Số số hạng thỏa mãn là (125-105):5+1=5(số)
a, Số tự nhiên m nhỏ nhất thoả mãn 106, số tự nhiên m lớn nhất thoả mãn là 124
Số các số tự nhiên m thoả mãn:
(124 - 108):2 + 1 = 10 (số)
b, Số tự nhiên m nhỏ nhất thoả mãn: 105
Số tự nhiên m lớn nhất thoả mãn: 125
Số các số tự nhiên m thoả mãn: (125-105):5 + 1 = 5 (số)
a,Cho a, b là các số nguyên tố thỏa mãn: 3a + 2b chia hết cho 5
Chứng minh rằng 2a + 3b chia hết cho 5
b,Tìm hai số tự nhiên a,b biết: BCNN ( a, b ) = 6 x Ư C L N ( a,b) và a - b =5
a, ta có (3a+2b )+( 2a+3b)=5(a+b) chia hêt cho 5
mà 3a+2b chia hết cho 5 nên 2a+3b chia hết cho 5 (đpcm)
b,Gọi (a,b)=d nên [a,b]=6d nên a=dm,b=dn
(a,b).[a,b]=a.b=d.d.6
a-b=d(m-n)=5 nên 5 chia hết cho d nên d =1 (nếu d = 5 thì loại) nên a.b = 6 nên a=6,b=1
, Tìm số tự nhiên nhỏ nhất chia cho 5; chia cho 7; chia cho 9 dư lần lượt là 3;4;5
b, Cho A=62x1y . Tìm các chữ số x,y thỏa mãn
1, A chia hết cho 2;3;5
2, A chia hết cho 45 và chia 2 dư 1
Gọi số cần tìm là a
Ta có a chia 5 dư 3 => a = 5b + 3
<=> 2a = 10b + 6
2a-1 = 10b + 5 \(⋮\)5 ( 1 )
a chia 7 dư 4 => a= 7c +4
2a = 14c + 8 => 2a - 1 = 14b + 7 \(⋮7\)( 2 )
a chia 9 dư 5 => a = 9d + 5
<=> 2a = 18d + 10 => 2a -1 = 18d + 9 \(⋮9\)( 3 )
Từ ( 1 ); ( 2 ); ( 3 ) => 2a - 1 \(⋮\)5;7;9
Để a là STN nhỏ nhất thì 2a - 1 \(\in BCNN\left(5;7;9\right)\)= 5.7.9 = 315
=> 2a = 316 => a = 158.
b, Tương tự phần a.
tìm tập hợp các số tự nhiên N vừa chia hết cho 2 vừa chia hết cho 5 và N thỏa mãn 136<N<182
N vừa chia hết cho 2,vừa chia hết cho 5.
=>N có chữ số tận cùng là 0 và 136<N<182
=>N={140;150;160;170;180}
a/ Tìm tập hợp các B(25) và tập hợp các Ư(28).
b/ Tìm số tự nhiên x sao cho 16 chia hết cho x và x < 4.
4/ Phân tích các số sau ra thừa số nguyên tố: 60; 84.
\(a)\)
\(B(25) = \) \(\left\{0;1;25;50;...\right\}\)
\(Ư\left(28\right)=\left\{1;2;4;7;14;28\right\}\)
\(b)\)
\(x\in\left\{8;16\right\}\)
\(c)\)
\(60=2^2.3.5\)
\(84 = 2^2 . 3 . 7\)
Bài 3: Khi chia số tự nhiên a cho 36 ta được số dư 12. Hỏi a có chia hết cho 4 ; cho 9 không? Vì sao?
Bài 4: Tìm x, biết
a) x ∈ B(7) và x ≤ 35
b) x ∈ Ư(18) và 4 < x ≤ 10
Bài 5: Tìm x ∈ N sao cho:
a) 6 chia hết cho x
b) 8 chia hết cho x + 1
c) 10 chia hết cho x - 2
Bài 3:
a chia 36 dư 12 số đó có dạng \(a=36k+12\left(k\in N\right)\)
\(\Rightarrow a=4\left(9k+3\right)\) nên a chia hết cho 4
Mà: \(9k\) ⋮ 3 ⇒ \(9k+3\) không chia hết cho 3
Nên a không chia hết cho 3
Bài 4:
a) \(x\in B\left(7\right)\) \(\Rightarrow x\in\left\{0;7;14;21;28;35;42;49;...\right\}\)
Mà: \(x\le35\)
\(\Rightarrow x\in\left\{0;7;14;21;28;35\right\}\)
b) \(x\inƯ\left(18\right)\Rightarrow x\in\left\{1;2;3;6;9;18\right\}\)
Mà: \(4< x\le10\)
\(\Rightarrow x\in\left\{6;9\right\}\)
Bài 5:
a) 6 chia hết cho x
\(\Rightarrow x\inƯ\left(6\right)\)
\(\Rightarrow x\in\left\{1;2;3;6\right\}\)
b) \(8\) chia hết cho \(x+1\)
\(\Rightarrow x+1\inƯ\left(8\right)\)
\(\Rightarrow x+1\in\left\{1;2;4;8\right\}\)
\(\Rightarrow x\in\left\{0;1;3;7\right\}\)
c) 10 chia hết cho \(x-2\)
\(\Rightarrow x-2\inƯ\left(10\right)\)
\(\Rightarrow x-2\in\left\{1;2;5;10\right\}\)
\(\Rightarrow x\in\left\{3;4;7;12\right\}\)
tìm a,b nguyên dương thỏa mãn:a+2 chia hết cho b và b+3 chia hết cho a