cho a/b=c/d (gt các tỉ số đều có nghĩa)
CMR
a-2b/b=c-2d/d
cmr ta có tỉ lệ thức a/b=c/d nếu có một trong các đẳng thức sau:
a, 2a+b/a-2b=2c+d/c-2d
b, (a+2c)(b-d)=(a-c)(b+2d) giả thiết các tỉ lệ thức đều có nghĩa
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\) (Giả thiết các tỉ số đều có nghĩa). Chứng minh:
a) \(\dfrac{5a+2b}{5a-2b}=\dfrac{5c+2d}{5a-2d}\) b)\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
a: Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Ta có: \(\dfrac{5a+2b}{5a-2b}=\dfrac{5bk+2b}{5bk-2b}=\dfrac{5k+2}{5k-2}\)
\(\dfrac{5c+2d}{5c-2d}=\dfrac{5dk+2d}{5dk-2d}=\dfrac{5k+2}{5k-2}\)
Do đó: \(\dfrac{5a+2b}{5a-2b}=\dfrac{5c+2d}{5c-2d}\)
Cho \(\frac{a}{b}\)= \(\frac{c}{d}\)Chứng minh : \(\frac{a+2b}{b}\)= \(\frac{c+2d}{d}\)( Các tỉ số đều có nghĩa )
đặt k nha ! muốn bít chi tiết , vui lòng kb vs mk nha
vì\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\)
ta có \(\frac{a+2b}{b}=\frac{c+2d}{d}\Rightarrow\left(a+2b\right)d=\left(c+2d\right)b\)\(\Leftrightarrow ad+2bd=bc+2bd\Leftrightarrow ad=bc\)
Đặt: \(\frac{a}{b}=\frac{c}{d}=k\) \(\left(k\inℚ\right)\)
\(\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Ta có: \(\frac{a+2b}{b}=\frac{bk+2b}{b}=\frac{b\left(k+2\right)}{b}=k+2\) (*)
Ta có: \(\frac{c+2d}{d}==\frac{dk+2d}{d}=\frac{d\left(k+2\right)}{d}=k+2\) (**)
Từ (*) và (**) => \(\frac{a+2b}{b}=\frac{c+2d}{d}\) ( = k + 2 )
Vậy:....
cmr ta có tỉ lệ thức a/b=c/d nếu có 1 trg các đẳg thức sau:
(a+2c)(b-d)=(a-c)(b+2d) giả thiết các tlt đều có nghĩa
Cho tỉ lệ thức:\(\frac{a}{b}\)=\(\frac{c}{d}\)Chứng minh rằng:\(\frac{3a-2b}{3a+2b}\)=\(\frac{3c-2d}{3c+2d}\)(Giả sử các tỉ lệ thức đều có nghĩa)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{2b}{2d}\)
= \(\frac{3a-2b}{3c-2d}=\frac{3a+2b}{3c+2d}\)=> \(\frac{3a-2b}{3a+2b}=\frac{3c-2d}{3c+2d}\)
tíc mình nhé! Thanks
Đặt a/b=c/d=k=>a=kb;c=kd
Khi đó ta có:3a-2b/3a+2b=3kb-2b/3kb+2b=b(3k-2)/b(3k+2)=3k-2/3k+2 (1)
3c-2d/3c+2d=3kd-2d/3kd+2d=d(3k-2)/d(3k+2)=3k-2/3k+2 (2)
Từ (1) và (2) =>....
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{2b}{2b}\)
\(=\frac{3a-2b}{3c-2d}=\frac{3a+2b}{3c+2d}\Rightarrow\frac{3a-2b}{3a+2b}=\frac{3c-2d}{3c+2d}\)
Đúng ko ạ? Đây là lần đầu tiên em làm dạng bài này mới học thêm nếu có sai sót mong anh chị giúp đỡ!
Chứng minh ràng nếu ta có tỉ lệ thức \(\frac{a}{b}\)= \(\frac{c}{d}\) nếu có một trong các đẳng thức sau:
a) \(\frac{2a+b}{a-2b}\)= \(\frac{2c+d}{c-2d}\).
b)( a+ 2c)( b- d)=( a- c)( b+ 2d).
( Giả thiết các tỉ lệ thức trên đều có nghĩa).
a ) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{2a}{2c}=\frac{2b}{2d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{b}{d}=\frac{2a}{2c}=\frac{2a+b}{2c+d}=\frac{a}{c}=\frac{2b}{2d}=\frac{a-2b}{c-2d}\)
\(\Rightarrow\frac{2a+b}{2c+d}=\frac{a-2b}{c-2d}\)
\(\Rightarrow\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\left(đpcm\right)\)
b ) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{2c}{2d}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{a}{b}=\frac{c}{d}=\frac{2c}{2d}=\frac{a+2c}{b+2d}=\frac{a-c}{b-d}\)
\(\Rightarrow\frac{a+2c}{b+2d}=\frac{a-c}{b-d}\)
\(\Rightarrow\left(a+2c\right)\left(b-d\right)=\left(a-c\right)\left(b+2d\right)\left(đpcm\right)\)
Chúc bạn học tốt !!!
\(\frac{a}{c}=\frac{b}{d}\)
suy ra\(\frac{2a}{2c}=\frac{b}{d}=\frac{2a+b}{2c+d}\left(1\right)\)
\(\frac{a}{c}=\frac{2b}{2d}=\frac{a-2b}{c-2d}\left(2\right)\)
\(tu\left(1\right)\left(2\right)suyra\)\(\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\)
a) \(\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
Áp dụng tính chất dãy tỉ số = nhau, ta có:
\(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{a+b+a-b}{c+d+c-d}=\frac{2a}{2c}=\frac{a}{c}\left(1\right)\)
\(\text{Chứng minh tương tự: }\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{a+b-\left(a-b\right)}{c+d-\left(c-d\right)}=\frac{a+b-a+b}{c+d-c+d}=\frac{2b}{2d}=\frac{b}{d}\left(2\right)\)
\(\text{Từ (1) và (2): }\Rightarrow\frac{a}{b}=\frac{c}{d}\left(Đ\text{PCM}\right)\)
b) \(\left(a+2c\right)\left(b-d\right)=\left(a-c\right)\left(b+2d\right)\)
\(\Rightarrow ab+ad+2cd=ab+2da+cd+2dc\)
\(\Rightarrow ad+2cb=2da+cb\)
\(\Rightarrow ab=cd\)
Cho a/b = c/d ( Giả thiết các tỉ lệ thức đều có nghĩa). Chứng minh a-2c/3a+c = b-2d/3b+d
Đặt \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt,c=dt\).
\(\frac{a-2c}{3a+c}=\frac{bt-2dt}{3bt+dt}==\frac{b-2d}{3b+d}\).
ơ anh ơi anh đã lm hết bài đou
cho các số a,b,c thỏa mãn : 3/a+b=2/b+c=1/c+a(gt các tỉ số đều có nghĩa)
Tính giá trị biểu thức : M=2a+3b+2020c/3a+2b-2021c
ta có : 3/a+b=2/b+c=1/c+a=>a+b/3=b+c/2=c+a/1
=a+b-b-c/3-2=a-c/1
=>c+a=a-c=>c=0=>b=2a
thay c=0;b=2a vào M ta đc:
M=2a+3.2a+2020.0/3a+2.2a-2021.0=8a/7a=8/7
Cho \(\frac{2a+b+c+d}{a}\)=\(\frac{a+2b+c+d}{b}\)=\(\frac{a+b+2c+d}{c}\)=\(\frac{a+b+c+2d}{d}\)
Tính giá trị của biểu thức M= \(\frac{a+b}{c+d}\)+\(\frac{b+c}{d+a}\)+\(\frac{c+d}{a+b}\)+\(\frac{d+a}{b+c}\)
( Giả thiết các tỉ số trên đều có nghĩa )
\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)
TH1: Nếu a+b+c+d\(\ne\)0 thì theo tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}=\frac{2a+b+c+d+a+2b+c+d+a+b+2c+d+a+b+c+2d}{a+b+c+d}\)\(=\frac{5a+5b+5c+5d}{a+b+c+d}=\frac{5\left(a+b+c+d\right)}{a+b+c+d}=5\)
<=> \(2a+b+c+d=5a;a+2b+c+d=5b;a+b+2c+d=5c;a+b+c+2d=5d\)
<=>\(b+c+d=3a;a+c+d=3b;a+b+d=3c;a+b+c=3d\)
=>\(b+c+d+a+c+d=3a+3b\Leftrightarrow a+b+2c+2d=3a+3b\)
<=>\(2c+2d=2a+2b\Leftrightarrow2\left(c+d\right)=2\left(a+b\right)\Leftrightarrow c+d=a+b\)
Chứng minh tương tự ta được b+c=d+a ; c+d=a+b ; d+a=b+c
=>\(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=1+1+1+1=4\)
TH2: a+b+c+d=0
\(\Leftrightarrow a+b=-\left(c+d\right);b+c=-\left(a+b\right);c+d=-\left(a+b\right);d+a=-\left(b+c\right)\)
\(\Rightarrow M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=\frac{-\left(c+d\right)}{c+d}+\frac{-\left(d+a\right)}{d+a}+\frac{-\left(a+b\right)}{a+b}+\frac{-\left(b+c\right)}{b+c}=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)
Vậy ........................