Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Huong Bui
Xem chi tiết
Nguyễn Khánh Việt
Xem chi tiết
Nguyễn Thị Phương Thảo
24 tháng 9 2021 lúc 10:27

Qua O kẻ đường thẳng vuông góc AB và CD, lần lượt cắt AB và CD tại E và F ⇒ E là trung điểm AB, F là trung điểm CD

AE=12AB=4(cm) ; CF=12CD=3(cm)

Áp dụng định lý pytago cho tam giác vuông OAE

OE=√OA2−AE2=√R2−AE2=3(cm)

Pitago tam giác vuông OCF:

OF=√OC2−CF2=√R2−CF2=4(cm)

⇒EF=OE+OF=7(cm)

chúc bn học tốt !

Khách vãng lai đã xóa
Name Win
14 tháng 5 2023 lúc 22:29

a) Ta có AH là đường cao của tam giác ABC, do đó AB là đường trung trực của đoạn thẳng LH (vì H là trung điểm của BC).

b) Ta có $\angle AED = \angle ACD$ do cùng chắn cung AD trên đường tròn (T). Mà $\angle A = \angle APQ$ vì DE // PQ, nên $\angle AED = \angle APQ$. Tương tự, ta cũng có $\angle ADE = \angle AQP$. Do đó tam giác ADE và APQ đều có hai góc bằng nhau, tức là cân.

c) Ta có $\angle LBD = \angle LCB$ do cùng chắn cung LB trên đường tròn (T). Mà $\angle LCB = \angle LPB$ vì DE // PQ, nên $\angle LBD = \angle LPB$. Tương tự, ta cũng có $\angle LDC = \angle LQC$. Do đó tam giác LBD và LPQ đều có hai góc bằng nhau, tức là đồng dạng. Vậy ta có $\frac{LD}{LP} = \frac{LB}{LQ}$.

Từ đó, có $\frac{LP}{LQ} = \frac{LB}{LD}$. Áp dụng định lý cosin trong tam giác BPQ, ta có:

$PQ^2 = BP^2 + BQ^2 - 2BP \cdot BQ \cdot \cos{\angle PBQ}$

Nhưng ta cũng có:

$BP = LB \cdot \frac{LD}{LP}$

$BQ = L \cdot \frac{LP}{LD}$

Thay vào định lý cosin, ta được:

$PQ^2 = LB^2 + LQ^2 - 2LB \cdot LQ \cdot \frac{LD}{LP} \cdot \frac{LP}{LD} \cdot \cos{\angle PBQ}$

$PQ^2 = LB^2 + LQ^2 - 2LB \cdot LQ \cdot \cos{\angle PBQ}$

Tương tự, áp dụng định lý cosin trong tam giác ADE, ta có:

$DE^2 = AD^2 + AE^2 - 2AD \cdot AE \cdot \cos{\angle AED}$

Nhưng ta cũng có:

$AD = LD \cdot \frac{LB}{LP}$

$AE = LQ \cdot \frac{LD}{LP}$

Thay vào định lý cosin, ta được:

$DE^2 = LD^2 + LQ^2 - 2LD \cdot LQ \cdot \frac{LB}{LP} \cdot \frac{LD}{LP} \cdot \cos{\angle AED}$

$DE^2 = LD^2 + LQ^2 - 2LD \cdot LQ \cdot \cos{\angle AED}$

Nhưng ta cũng có $\angle AED = \angle PBQ$ do tam giác cân ADE và APQ, nên $\cos{\angle AED} = \cos{\angle PBQ}$. Do đó,

$DE^2 + PQ^2 = 2(LB^2 + LQ^2) - 4LB \cdot LQ \cdot \cos{\angle PBQ}$

Nhưng ta cũng có $LB \cdot LQ = LH \cdot LL'$ (với L' là điểm đối xứng của L qua AB), do tam giác HL'B cân tại L'. Thay vào phương trình trên, ta được:

$DE^2 + PQ^2 = 2(LB^2 + LQ^2) - 4LH \cdot LL' \cdot \cos{\angle PBQ}$

....
Xem chi tiết
linh nguyen
Xem chi tiết
Adu vip
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 7 2021 lúc 23:01

undefined

Nguyễn Việt Lâm
22 tháng 7 2021 lúc 23:00

Từ O kẻ đường thẳng vuông góc AB và CD, cắt AB và CD lần lượt tại H và K

\(\Rightarrow\) H là trung điểm AB và K là trung điểm CD

\(\Rightarrow\left\{{}\begin{matrix}AH=\dfrac{1}{2}AB=4\\CK=\dfrac{1}{2}CD=4,8\end{matrix}\right.\)

Áp dụng định lý Pitago cho tam giác vuông OAH (với chú ý \(OA=OC=R=5\))

\(OH=\sqrt{OA^2-AH^2}=3\left(cm\right)\)

Pitago tam giác OCK:

\(OK=\sqrt{OC^2-CK^2}=1,4\left(cm\right)\)

\(\Rightarrow HK=OH+OK=4,4\left(cm\right)\)

LuKenz
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 5 2019 lúc 16:02

Gọi HK là đường thẳng qua O và vuông góc với AB và CD, H ∈ AB; KCD

Ta có OK=3cm, OK=4cm

=> HK = 7cm hoặc HK = 1cm

Vũ Hoàng Anh
Xem chi tiết
Phạm Quỳnh Anh
Xem chi tiết
Park Jimin
Xem chi tiết