tam giác ABC vuông tại A đường cao AH . D,E lần lượt là hình chiếu của H trên AB và AC
CM
a)AB2/AC2=HB/HC
b)AB3/AC3=BD/CE
c)DE3=BC.BD.CE
cho △ABC⊥A, đường cao AH, D và E lần lượt là hình chiếu của H trên AB, AC. chứng minh
a)\(\dfrac{HB}{HC}=\left(\dfrac{AB}{AC}\right)^2\)
b)\(\dfrac{CE}{BD}=\left(\dfrac{CA}{AB}\right)^3\)
c)\(AH^3=BC.BD.CE\)
d)\(3AH^2+BD^2+CE^2=BC^2\)
lm nhanh giúp mk nhé! Mk đang càn gấp lắm!
a) Ta có: \(\left(\dfrac{AB}{AC}\right)^2=\dfrac{AB^2}{AC^2}=\dfrac{BH.BC}{CH.BC}=\dfrac{BH}{HC}\)
b) Ta có: \(\left(\dfrac{CA}{AB}\right)^4=\left(\dfrac{CA^2}{AB^2}\right)^2=\left(\dfrac{CH.BC}{BH.BC}\right)^2=\dfrac{CH^2}{BH^2}=\dfrac{CE.CA}{BD.BA}\)
\(=\dfrac{CE}{BD}.\dfrac{CA}{BA}\Rightarrow\left(\dfrac{CA}{AB}\right)^3=\dfrac{CE}{BD}\)
c) Ta có: \(AH^4=\left(AH^2\right)^2=\left(BH.CH\right)^2=BH^2.CH^2\)
\(=BD.BA.CE.CA=BD.CE\left(AB.AC\right)=BD.CE.AH.BC\)
\(\Rightarrow BD.CE.BC=AH^3\)
d) Vì \(\angle HDA=\angle HEA=\angle DAE=90\Rightarrow ADHE\) là hình chữ nhật
\(\Rightarrow AH=DE\Rightarrow AH^2=DE^2=DH^2+HE^2\)
Ta có: \(3AH^2+BD^2+CE^2=2AH^2+\left(DH^2+BD\right)^2+\left(HE^2+CE^2\right)\)
\(=2.HB.HC+BH^2+CH^2=\left(BH+CH\right)^2=BC^2\)
Cho tam giác ABC vuông tại A (AB<AC). Kẻ đường cao AH của tam giác ABC. Gọi D và E lần lượt là hình chiếu của H trên AB và AC.
a) Biết AB=6cm và HC=6,4cm. Tính AC và BC.
b) CMR: \(DE^3=BC.BD.CE\)
c) Đường thẳng qua B vuông góc với BC cắt HD tại M; đường thẳng qua C vuông góc với BC cắt HE tại N. Chứng minh: M, A, N thẳng hàng
d) CM: Ba đường thẳng BN, CM, DE đồng quy
Cho tam giác ABC vuông tại A (AB<AC). Kẻ đường cao AH của tam giác ABC. Gọi D và E lần lượt là hình chiếu của H trên AB và AC.
a) Biết AB=6cm và HC=6,4cm. Tính AC và BC.
b) CMR: \(DE^3=BC.BD.CE\)
c) Đường thẳng qua B vuông góc với BC cắt HD tại M; đường thẳng qua C vuông góc với BC cắt HE tại N. Chứng minh: M, A, N thẳng hàng
d) CM: Ba đường thẳng BN, CM, DE đồng quy
Cho ∆ABC vuông tại A, đường cao AH. Gọi D, E lần lượt là hình chiếu của H trên AB và AC. Cm:
a) AD. AB=AE. AC=HC. HB
b) DA. DB+EA. EC=HB. HC
c) AE. AB+AD. AC=AB. AC
d) AH^3 =BD. CE. BC
e) 1/HD^2 + 1/HC^2 = 1/HE^2 + 1/HB^2
f) AB^3/AC^3 = DB/EC
g) BD.√CH + CE√CH = AH√DC.
Cho tam giác ABC vuông tại A, có đường cao là AH, HB = 9cm, HC = 16 cm
a, Tính AB, AC, AH
b, Gọi D và E lần lượt là hình chiếu vuông góc của H trên AB và AC. Tứ giác ADHE là hình gì?
c, Tính chu vi và diện tích của tứ giác ADHE
d, Tính chu vi và diện tích tứ giác BDEC
a)Áp dụng HTL2 vào tam giác ABC cuông tại A, đường cao AH ta có:
AH2=BH.HC=9.16=144
<=>AH=√144=12((cm)
Áp dụng định lý Pytago vào tam giác vuông BHA ta có:
BA2=AH2+BH2=122+92=225
<=>BA=√225=15(cm)
Áp dụng định lý Pytago vào tam giác vuông CHA ta có:
CA2=AH2+CH2=122+162=20(cm)
Vậy AB=15cm,AC=20cm,AH=12cm
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E và F lần lượt là hình chiếu của H trên AB, AC. a) Chứng minh: AB^2 = BH . BC b) Chứng minh: AH^2 = HB . HC c) Chứng minh tam giác AFE đồng dạng với tam giác ABC. d) Cho BC = 30 cm, AC = 12 cm, tính diện tích tam giác AEF
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E và F lần lượt là hình chiếu của H trên AB, AC. a) Chứng minh: AB^2 = BH . BC b) Chứng minh: AH^2 = HB . HC c) Chứng minh tam giác AFE đồng dạng với tam giác ABC. d) Cho BC = 30 cm, AC = 12 cm, tính diện tích tam giác AEF
tam giác ABC vuông tại A có AB>AC đường cao AH, E và F theo thứ tự là hình chiếu vuông góc của H trên AB, AC. EF cắt AH tại O
a) chứng minh AB2=BH.BC và EF.BC= AB.AC
b) Gọi I, K lần lượt là trung điểm của HC, HB. Chứng minh
c) EF cắt BC tại T. Chứng minh TF.TE=TC.TB
Cho tam giác ABC vuông tại A, đường cao AH. Cho biết BH=8 cm,CH=18 cm.Gọi D,E lần lượt là hình chiếu vuông góc của H trên các cạnh AB và AC . Gọi M và N lần lượt là trung điểm của HB và HC . Tính SDENM ?
cho tam giác ABC vuông tại A vẽ đường cao AH .
a) Chứng minh tam giác ABC đồng dạnh với tam giác HBA. Từ đó suy ra AB2=BC.BH
b)gọi E,F lần lượt là hình chiếu của H lên AB và AC. Chứng minh:AB2/AC2=BE/AE
C) phân giác của góc ABC cắt AH và AC lần lượt tại Mvà N . Chứng minh AM2=MH.NC