Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Điệp Đỗ
Xem chi tiết
Phương An
19 tháng 7 2017 lúc 13:44

\(x+y+12=4\sqrt{x}-6\sqrt{y-1}\) (ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\y\ge1\end{matrix}\right.\))

\(\Leftrightarrow\left(x-4\sqrt{x}+4\right)+\left[\left(y-1\right)+6\sqrt{y-1}+9\right]=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)^2+\left(\sqrt{y-1}+3\right)^2=0\)

\(\left\{{}\begin{matrix}\left(\sqrt{x}-2\right)^2\ge0\\\left(\sqrt{y-1}+3\right)^2\ge9\end{matrix}\right.\Rightarrow VT\ge9\)

Vậy pt vô nghiệm.

ღ🍹🌵 Như Phạm 🌵🍹ღ
Xem chi tiết
Nguyen Phuc Duy
Xem chi tiết
Nguyễn Thị Thanh Vân
15 tháng 6 2019 lúc 7:46

cá sấu

cao van duc
15 tháng 6 2019 lúc 8:29

chuyển sang 1 vế r dùng hằng đẳng thức

tth_new
15 tháng 6 2019 lúc 8:44

Em làm thế này đúng không ạ:

Đk:....

Theo đề bài ta có:

\(\left(x-2.\sqrt{x}.2+4\right)+\left[\left(y-1\right)-2.\sqrt{y-1}.3+9\right]=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)^2+\left(\sqrt{y-1}-3\right)^2=0\)

...

Điệp Đỗ
Xem chi tiết
Bạch Y
29 tháng 5 2018 lúc 21:21

Đk: \(\left\{{}\begin{matrix}x\ge0\\y\ge1\end{matrix}\right.\)

đặt \(\left\{{}\begin{matrix}a=\sqrt{x}\\b=\sqrt{y-1}\end{matrix}\right.\) (a,b >/ 0)

được: \(a^2+b^2+13=4a-6b\Leftrightarrow\left(a-2\right)^2+\left(b+3\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=-3\left(L\right)\end{matrix}\right.\)

ptvn

hơi kỳ!

Huỳnh Ngọc Nhiên
Xem chi tiết
Trần Thị Loan
22 tháng 7 2015 lúc 7:39

Điều kiện: x \(\ge\)0; y \(\ge\) 1

PT <=> \(x-4\sqrt{x}+y-6\sqrt{y-1}+12=0\)

<=>  \(\left(x-4\sqrt{x}+4\right)+\left(\left(y-1\right)-6\sqrt{y-1}+9\right)=0\)

<=> \(\left(\sqrt{x}-2\right)^2+\left(\sqrt{y-1}-3\right)^2=0\)

<=> \(\left(\sqrt{x}-2\right)^2=\left(\sqrt{y-1}-3\right)^2=0\)  (Vì \(\left(\sqrt{x}-2\right)^2;\left(\sqrt{y-1}-3\right)^2\ge0\) với mọi x >=0  và  y>= 1 )

<=> \(\sqrt{x}-2=0;\sqrt{y-1}-3=0\) <=> x= 4; y - 1 =9 <=> x =4 và y = 10 (TMĐK) 

Vậy...

Lê Chí Cường
Xem chi tiết
Thủy Phạm Thanh
Xem chi tiết
Phan Văn Hiếu
29 tháng 11 2017 lúc 12:53

x=3;y=2;z=1 

phân tích làm hàng đẳng thức bình phương

bùi hoàng yến
Xem chi tiết
Cold Wind
24 tháng 6 2018 lúc 20:18

hình như...

b) \(x+y+z+8=2\sqrt{x-3}+4\sqrt{y-3}+6\sqrt{z-3}\)

\(\Leftrightarrow x-3+y-3+z-3+17=2\sqrt{x-3}+4\sqrt{y-3}+6\sqrt{z-3}\)

\(\Leftrightarrow\left(x-3-2\sqrt{x-3}+1\right)+\left(y-3-4\sqrt{y-3}+4\right)+\left(z-3-6\sqrt{z-3}+9\right)+3=0\)

\(\Leftrightarrow\left(\sqrt{x-3}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-3}-3\right)^2+3=0\) (vô nghiệm, VT >/3)

Kl: ptvn

Cold Wind
25 tháng 6 2018 lúc 14:01

c) là y - 2002 , z-2003 chứ 0 phải x đúng 0? (đoán thôi)

Lê Thu Hiền
Xem chi tiết
An Thy
20 tháng 6 2021 lúc 9:02

a) ĐKXĐ: \(x,y\ge0\)

\(M=\dfrac{x\sqrt{y}-\sqrt{y}-y\sqrt{x}+\sqrt{x}}{1+\sqrt{xy}}=\dfrac{x\sqrt{y}-y\sqrt{x}+\sqrt{x}-\sqrt{y}}{1+\sqrt{xy}}\)

\(=\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)+\left(\sqrt{x}-\sqrt{y}\right)}{1+\sqrt{xy}}=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(1+\sqrt{xy}\right)}{1+\sqrt{xy}}=\sqrt{x}-\sqrt{y}\)

b) \(x=\left(1-\sqrt{3}\right)^2\Rightarrow\sqrt{x}=\sqrt{\left(1-\sqrt{3}\right)^2}=\left|1-\sqrt{3}\right|=\sqrt{3}-1\)

\(y=3-\sqrt{8}\Rightarrow\sqrt{y}=\sqrt{3-\sqrt{8}}=\sqrt{3-2\sqrt{2}}=\sqrt{\left(\sqrt{2}\right)^2-2.\sqrt{2}.1+1^2}\)

\(=\sqrt{\left(\sqrt{2}-1\right)^2}=\left|\sqrt{2}-1\right|=\sqrt{2}-1\)

\(\Rightarrow M=\left(\sqrt{3}-1\right)-\left(\sqrt{2}-1\right)=\sqrt{3}-\sqrt{2}\)