Tìm x và y biết rằng: x+y+12= \(4\sqrt{x}+6\sqrt{y-1}\)
tìm x,y biết rằng x+y+12=\(4\sqrt{x}-6\sqrt{y-1}\)
\(x+y+12=4\sqrt{x}-6\sqrt{y-1}\) (ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\y\ge1\end{matrix}\right.\))
\(\Leftrightarrow\left(x-4\sqrt{x}+4\right)+\left[\left(y-1\right)+6\sqrt{y-1}+9\right]=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)^2+\left(\sqrt{y-1}+3\right)^2=0\)
Vì \(\left\{{}\begin{matrix}\left(\sqrt{x}-2\right)^2\ge0\\\left(\sqrt{y-1}+3\right)^2\ge9\end{matrix}\right.\Rightarrow VT\ge9\)
Vậy pt vô nghiệm.
tìm x, y biết \(x+y+12=4\sqrt{x}-6\sqrt{y-1}\)
Tìm x , y biết :
\(x+y+12=4\sqrt{x}+6\sqrt{y-1}\)
Em làm thế này đúng không ạ:
Đk:....
Theo đề bài ta có:
\(\left(x-2.\sqrt{x}.2+4\right)+\left[\left(y-1\right)-2.\sqrt{y-1}.3+9\right]=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)^2+\left(\sqrt{y-1}-3\right)^2=0\)
...
tìm x,y biết rằng: x + y + 12 = 4\(\sqrt{x}\) - 6\(\sqrt{y-1}\)
Đk: \(\left\{{}\begin{matrix}x\ge0\\y\ge1\end{matrix}\right.\)
đặt \(\left\{{}\begin{matrix}a=\sqrt{x}\\b=\sqrt{y-1}\end{matrix}\right.\) (a,b >/ 0)
được: \(a^2+b^2+13=4a-6b\Leftrightarrow\left(a-2\right)^2+\left(b+3\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=-3\left(L\right)\end{matrix}\right.\)
ptvn
hơi kỳ!
Tìm x, y biết: \(x+y+12=4\sqrt{x}+6\sqrt{y-1}\)
Điều kiện: x \(\ge\)0; y \(\ge\) 1
PT <=> \(x-4\sqrt{x}+y-6\sqrt{y-1}+12=0\)
<=> \(\left(x-4\sqrt{x}+4\right)+\left(\left(y-1\right)-6\sqrt{y-1}+9\right)=0\)
<=> \(\left(\sqrt{x}-2\right)^2+\left(\sqrt{y-1}-3\right)^2=0\)
<=> \(\left(\sqrt{x}-2\right)^2=\left(\sqrt{y-1}-3\right)^2=0\) (Vì \(\left(\sqrt{x}-2\right)^2;\left(\sqrt{y-1}-3\right)^2\ge0\) với mọi x >=0 và y>= 1 )
<=> \(\sqrt{x}-2=0;\sqrt{y-1}-3=0\) <=> x= 4; y - 1 =9 <=> x =4 và y = 10 (TMĐK)
Vậy...
Giả sử \(x^3\ge y^2\)và \(x,y\in Q^+\)
Tìm x,y để \(\sqrt{\frac{x-8.\sqrt[6]{x^3y^2}+4.\sqrt[3]{y^2}}{\sqrt{x}-2.\sqrt[3]{y}+2.\sqrt[12]{x^3.y^2}}+3.\sqrt[3]{y}}+\sqrt[6]{y}=1\)
Tìm x, y,z thỏa mãn :
\(x+y+z+4=2\sqrt{x-3}+2\sqrt{y+2}+4\sqrt{z-1}\)
( Biết rằng x, y, z thuôc R và x≥3·y≥2·z≥1)
x=3;y=2;z=1
phân tích làm hàng đẳng thức bình phương
tìm x,y,z biết
a) x+y+z+12=4\(\sqrt{x}+6\sqrt{y-1}\)
b)x+y+z+8=2\(\sqrt{x-3}+4\sqrt{y-3}+6\sqrt{z-3}\)
c)\(\sqrt{x-2001}+\sqrt{x-2002}-\sqrt{x-2003}=\dfrac{1}{2}\left(x+y+z\right)-3015\)
hình như...
b) \(x+y+z+8=2\sqrt{x-3}+4\sqrt{y-3}+6\sqrt{z-3}\)
\(\Leftrightarrow x-3+y-3+z-3+17=2\sqrt{x-3}+4\sqrt{y-3}+6\sqrt{z-3}\)
\(\Leftrightarrow\left(x-3-2\sqrt{x-3}+1\right)+\left(y-3-4\sqrt{y-3}+4\right)+\left(z-3-6\sqrt{z-3}+9\right)+3=0\)
\(\Leftrightarrow\left(\sqrt{x-3}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-3}-3\right)^2+3=0\) (vô nghiệm, VT >/3)
Kl: ptvn
c) là y - 2002 , z-2003 chứ 0 phải x đúng 0? (đoán thôi)
Cho biểu thức \(M=\dfrac{x\sqrt{y}-\sqrt{y}-y\sqrt{x}+\sqrt{x}}{1+\sqrt{xy}}\)
a, Tìm điều kiện xác định và rút gọn M
b. Tính giá trị của M ,biết rằng \(x=\left(1-\sqrt{3}\right)^2\)và \(y=3-\sqrt{8}\)
a) ĐKXĐ: \(x,y\ge0\)
\(M=\dfrac{x\sqrt{y}-\sqrt{y}-y\sqrt{x}+\sqrt{x}}{1+\sqrt{xy}}=\dfrac{x\sqrt{y}-y\sqrt{x}+\sqrt{x}-\sqrt{y}}{1+\sqrt{xy}}\)
\(=\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)+\left(\sqrt{x}-\sqrt{y}\right)}{1+\sqrt{xy}}=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(1+\sqrt{xy}\right)}{1+\sqrt{xy}}=\sqrt{x}-\sqrt{y}\)
b) \(x=\left(1-\sqrt{3}\right)^2\Rightarrow\sqrt{x}=\sqrt{\left(1-\sqrt{3}\right)^2}=\left|1-\sqrt{3}\right|=\sqrt{3}-1\)
\(y=3-\sqrt{8}\Rightarrow\sqrt{y}=\sqrt{3-\sqrt{8}}=\sqrt{3-2\sqrt{2}}=\sqrt{\left(\sqrt{2}\right)^2-2.\sqrt{2}.1+1^2}\)
\(=\sqrt{\left(\sqrt{2}-1\right)^2}=\left|\sqrt{2}-1\right|=\sqrt{2}-1\)
\(\Rightarrow M=\left(\sqrt{3}-1\right)-\left(\sqrt{2}-1\right)=\sqrt{3}-\sqrt{2}\)