Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hoàng thành
Xem chi tiết
hoàng thành
6 tháng 7 2023 lúc 15:15

phân tích đa thức thành nhân tử

 

thanh
Xem chi tiết
Rin Huỳnh
4 tháng 9 2021 lúc 11:54

Biến đổi tương đương nhé bạn.

Nguyễn Lê Phước Thịnh
4 tháng 9 2021 lúc 12:52

a: Ta có: \(\left(x+y\right)^2\)

\(=x^2+2xy+y^2\)

\(\Leftrightarrow x^2+y^2=\dfrac{\left(x+y\right)^2}{2xy}\ge\dfrac{\left(x+y\right)^2}{2}\forall x,y>0\)

le thi thu huyen
Xem chi tiết
Tuấn Anh Phạm
8 tháng 8 2017 lúc 23:06

a)(x-y)3+(y-z)3+(z-x)3

=3(x-y+y-z+z-x)=3

b)nhân vào là rồi đối trừ là hết luôn ( nhưng là mũ 2 hay nhân 2 v mk là theo nhân 2 nhé]

Trang Nghiêm
Xem chi tiết
Toru
27 tháng 10 2023 lúc 18:13

a, \(8^3yz+12^2yz+6xyz+yz\)

\(=512yz+144yz+6xyz+yz\)

\(=yz\left(512+14+6x+1\right)\)

\(=yz\left(527+6x\right)\)

$---$

b, \(81x^4\left(z^2-y^2\right)-z^2+y^2\)

\(=81x^4\left(z^2-y^2\right)-\left(z^2-y^2\right)\)

\(=\left(z^2-y^2\right)\left(81x^4-1\right)\)

\(=\left(z-y\right)\left(z+y\right)\left[\left(9x^2\right)^2-1^2\right]\)

\(=\left(z-y\right)\left(z+y\right)\left(9x^2-1\right)\left(9x^2+1\right)\)

\(=\left(z-y\right)\left(z+y\right)\left[\left(3x\right)^2-1^2\right]\left(9x^2+1\right)\)

\(=\left(z-y\right)\left(z+y\right)\left(3x-1\right)\left(3x+1\right)\left(9x^2+1\right)\)

$---$

c, \(\dfrac{x^3}{8}-\dfrac{y^3}{27}+\dfrac{x}{2}-\dfrac{y}{3}\)

\(=\left[\left(\dfrac{x}{2}\right)^3-\left(\dfrac{y}{3}\right)^3\right]+\left(\dfrac{x}{2}-\dfrac{y}{3}\right)\)

\(=\left(\dfrac{x}{2}-\dfrac{y}{3}\right)\left(\dfrac{x^2}{4}+\dfrac{xy}{6}+\dfrac{y^2}{9}\right)+\left(\dfrac{x}{2}-\dfrac{y}{3}\right)\)

\(=\left(\dfrac{x}{2}-\dfrac{y}{3}\right)\left(\dfrac{x^2}{4}+\dfrac{xy}{6}+\dfrac{y^2}{9}+1\right)\)

$---$

d, \(x^6+x^4+x^2y^2+y^4-y^6\)

\(=\left(x^6-y^6\right)+\left(x^4+x^2y^2+y^4\right)\)

\(=\left[\left(x^2\right)^3-\left(y^2\right)^3\right]+\left(x^4+x^2y^2+y^4\right)\)

\(=\left(x^2-y^2\right)\left(x^4+x^2y^2+y^4\right)+\left(x^4+x^2y^2+y^4\right)\)

\(=\left(x^4+x^2y^2+y^4\right)\left(x^2-y^2+1\right)\)

$Toru$

Nguyễn Đức Duy
Xem chi tiết
Nguyễn Ngọc Anh Minh
13 tháng 7 2023 lúc 14:24

\(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2yz+2xz\) Thay x+y+z=0 vào

\(\Rightarrow0=x^2+y^2+z^2+2\left(xy+yz+xz\right)\)

\(\Leftrightarrow x^2+y^2+z^2=-2\left(xy+yz+xz\right)\) (1)

Ta có

\(\left(x^2+y^2+z^2\right)^2=x^4+y^4+z^4+2x^2y^2+2y^2z^2+2x^2z^2\) (2)

Bình phương 2 vế của (1)

\(\left(x^2+y^2+z^2\right)^2=4\left(xy+yz+xz\right)^2\)

\(\Leftrightarrow\left(x^2+y^2+z^2\right)^2=4\left(x^2y^2+y^2z^2+x^2z^2+2xy^2z+2xyz^2+2x^2yz\right)\)

\(\Leftrightarrow\left(x^2+y^2+z^2\right)^2=4\left[x^2y^2+y^2z^2+x^2z^2+2xyz\left(x+y+z\right)\right]\)

Do x+y+z=0 nên

\(\left(x^2+y^2+z^2\right)^2=4\left(x^2y^2+y^2z^2+x^2z^2\right)\)

\(\Rightarrow\dfrac{\left(x^2+y^2+z^2\right)^2}{2}=2x^2y^2+2y^2z^2+2x^2z^2\) (3)

Thay (3) vào (2)

\(\left(x^2+y^2+z^2\right)^2=x^4+y^4+z^4+\dfrac{\left(x^2+y^2+z^2\right)^2}{2}\)

\(\Rightarrow2\left(x^4+y^4+z^4\right)=\left(x^2+y^2+z^2\right)^2\) (đpcm)

 

 

 

Khánh Linh
Xem chi tiết
Minh Hiếu
25 tháng 10 2021 lúc 20:50

a) \(3x\left(2x-y\right)+5y\left(y-2x\right)\)

\(=3x\left(2x-y\right)-5y\left(2x-y\right)\)

\(=\left(3x-5y\right)\left(2x-y\right)\)

b) \(\left(x-5\right)^2-9\left(x+y\right)^2\)

\(=\left(x-5\right)^2-3^2\left(x+y\right)^2\)

\(=\left(x-5\right)^2-\left(3x+3y\right)^2\)

\(=\left(x-5+3x+3y\right)\left(x-5-3x-3y\right)\)

\(=\left(4x+3y-5\right)\left(-2x-3y-5\right)\)

Nguyễn Lê Phước Thịnh
25 tháng 10 2021 lúc 20:52

a: \(3x\left(2x-y\right)+5y\left(y-2x\right)=\left(2x-y\right)\left(3x-5y\right)\)

e: \(x^2-10x+24=\left(x-4\right)\left(x-6\right)\)

Dương Thuỳ Trang
25 tháng 10 2021 lúc 21:05

g) \(6x^2+7x-5\)

=\(6x^2+10x-3x-5\)

=\(\left(6x^2+10x\right)-\left(3x+5\right)\)

=\(2x\left(3x+5\right)-\left(3x+5\right)\)

=\(\left(2x-1\right)\left(3x+5\right)\)

Anh Đức
Xem chi tiết
Nguyễn Hoàng Minh
16 tháng 11 2021 lúc 8:36

\(1,\\ a,=6x^4-15x^3-12x^2\\ b,=x^2+2x+1+x^2+x-3-4x=2x^2-x-2\\ c,=2x^2-3xy+4y^2\\ 2,\\ a,=7x\left(x+2y\right)\\ b,=3\left(x+4\right)-x\left(x+4\right)=\left(3-x\right)\left(x+4\right)\\ c,=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\\ d,=x^2-5x+3x-15=\left(x-5\right)\left(x+3\right)\\ 3,\\ a,\Leftrightarrow3x\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

i love Vietnam
16 tháng 11 2021 lúc 8:40

Câu 1

a)\(3x^2\left(2x^2-5x-4\right)=6x^4-15x^3-12x^2\)

b)\(\left(x+1\right)^2+\left(x-2\right)\left(x+3\right)-4x=x^2+2x+1+x^2+3x-2x-6-4x=2x^2-x-5\)

 

i love Vietnam
16 tháng 11 2021 lúc 8:52

Bài 2

a) \(7x^2+14xy=7x\left(x+2y\right)\)

b) \(3x+12-\left(x^2+4x\right)=-x^2-x+12=\left(-x+3\right)\left(x+4\right)\)

c) \(x^2-2xy+y^2=\left(x-y\right)^2\)

d) \(x^2-2x-15=x^2+3x-5x-15=\left(x+3\right)\left(x-5\right)\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 10 2017 lúc 7:02

x 2 y + x y 2  +  x 2 z + x z 2  +  y 2 z + y z 2  + 3xyz.

= ( x 2  y +  x 2 z + xyz) + (x y 2  +  y 2 z + xyz) + (x z 2  + y z 2  + xyz)

= x(xy + xz + yz) + y(xy + yz + xz) + z(xz + yz + xy)

= (x + y + z)(xy + xz + yz).

Ngô Chi Lan
14 tháng 12 2020 lúc 21:12

\(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+3xyz\)

\(=\left(x^2y+x^2z+xyz\right)+\left(xz^2+yz^2+xyz\right)+\left(xy^2+y^2z+xyz\right)\)

\(=x\left(xy+xz+yz\right)+z\left(xz+yz+xy\right)+y\left(xy+yz+xz\right)\)

\(=\left(x+y+z\right)\left(xy+yz+xz\right)\)

Khách vãng lai đã xóa
minh tống
Xem chi tiết
Thanh Hà
7 tháng 6 2017 lúc 16:14

Ntu là j z bn

minh tống
7 tháng 6 2017 lúc 16:20

là nhân tử bạn nhé

minh tống
7 tháng 6 2017 lúc 16:24

bạn giúp mình giải với <3

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 8 2018 lúc 8:41