A=(1+a)(1+a2)(1+a4)(1+a8)(1+a16)(1+a32)
Tính A - (1+a)64
Giúp mik với nha >.<
1)Cmr nếu a-b=1 thì (a+b)(a2+b2)(a4+b4)...(a32+b32) =a64-b64
2) Cho x2=y2+z2. CM (5x-3y+4z)(5x-3y-4z)=(3x-5y)2
1) Ta có: \(\left(a+b\right)\left(a^2+b^2\right)\left(a^4+b^4\right)\cdot...\cdot\left(a^{32}+b^{32}\right)\)
\(=\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)\left(a^4+b^4\right)\cdot...\cdot\left(a^{32}+b^{32}\right)\)
\(=\left(a^2-b^2\right)\left(a^2+b^2\right)\left(a^4+b^4\right)\cdot...\cdot\left(a^{32}+b^{32}\right)\)
\(=\left(a^4-b^4\right)\left(a^4+b^4\right)\cdot...\cdot\left(a^{32}+b^{32}\right)\)
\(=\left(a^8-b^8\right)\left(a^8+b^8\right)\left(a^{16}+b^{16}\right)\left(a^{32}+b^{32}\right)\)
\(=\left(a^{16}-b^{16}\right)\left(a^{16}+b^{16}\right)\left(a^{32}+b^{32}\right)\)
\(=\left(a^{32}-b^{32}\right)\left(a^{32}+b^{32}\right)\)
\(=a^{64}-b^{64}\)
chọn A, A1...điền vào:
1) FeS2+A---> A1+A2
2)A2+A--->A3
3)A3+h2o--->A4
4)A1+A4--->A5+h2o
5)A1+A6--->A7+h2o
6)A7+A---->A8
7)A8+A4--->A5+A9+h2o
8)A7+A5---> A9
giúp em với ạ!em cảm ơn.
Bạn tự viết ra và cân bằng phương trình nhé!
\(A:O_2\\ A_1:Fe_2O_3\\ A_2:SO_2\\ A_3:SO_3\\ A_4:H_2SO_4\\ A_5:Fe_2\left(SO_4\right)_3\\ A_6:H_2\\ A_7:Fe\\ A_8:Fe_3O_4\\ A_9:FeSO_4\)
Phương trình 1 + a + a 2 + . . . + a x = ( 1 + a ) ( 1 + a 2 ) ( 1 + a 4 ) với 0 < a ≠ 1 có bao nhiêu nghiệm?
A. 0
B. 1
C. 2
D. 3
1. a3 + b3 + c3 - 3abc
2. a10 + a5 + 1
3. a8 + a + 1
4. a8 + a7 + 1
5. a16 + a8b8 + b16
6. (a + 1)(a + 3)(a + 5)(a + 7) + 15
7. 4x2y2 (2x + y) + y2z2 ( z - y) + x2z2 ( 2x + z)
8. be ( a + b)(b - c) - ac(b + d)(a - c) + ab(c + d(a - b)
9. (x - y)3 + (y - z)3 + (z - x)3
10. x4 + 6x3 + 7x2 - 6x + 1
\(1,=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\\ =\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\\ =\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\\ 2,=a^{10}-a+a^5-a^2+a^2+a+1\\ =a\left(a^3-1\right)\left(a^3+1\right)+a^2\left(a^3-1\right)+\left(a^2+a+1\right)\\ =\left(a-1\right)\left(a^2+a+1\right)\left(a^4+a^2+a\right)+\left(a^2+a+1\right)\\ =\left(a^2+a+1\right)\left[\left(a-1\right)\left(a^4+a^2+a\right)+1\right]\\ =\left(a^2+a+1\right)\left(a^5-a^4+a^3-a+1\right)\)
\(3,=a^8+a^7-a^7+a^6-a^6+a^5-a^5+a^4-a^4+a^3-a^3+a^2-a^2+a+1\\ =a^6\left(a^2+a+1\right)-a^5\left(a^2+a+1\right)+a^3\left(a^2+a+1\right)-a^2\left(a^2+a+1\right)+\left(a^2+a+1\right)\\ =\left(a^2+a+1\right)\left(a^6-a^5+a^3-a^2+1\right)\)
\(4,=a^8+a^7-a^6+a^6+1=a^6\left(a^2+a+1\right)-\left(a^3-1\right)\left(a^3+1\right)\\ =\left(a^2+a+1\right)\left[a^6-\left(a-1\right)\left(a^3+1\right)\right]\\ =\left(a^2+a+1\right)\left(a^6-a^4-a+a^3-1\right)\)
\(5,=\left(a^{16}+2a^8b^8+b^{16}\right)-a^8b^8=\left(a^4+b^4\right)^2-\left(a^4b^4\right)^2\\ =\left(a^4+b^4-a^4b^4\right)\left(a^4+b^4+a^4b^4\right)\\ 6,=\left(a^2+8a+7\right)\left(a^2+8a+15\right)+15\\ =\left(a^2+8a+11\right)^2-16+15\\ =\left(a^2+8a+11\right)^2-1\\ =\left(a^2+8a+10\right)\left(a^2+8a+12\right)\)
Câu 7 mình làm riêng nhé
\(7,=8x^3y^2+4x^2y^3+y^2z^3-y^3z^2+x^2z^2\left(2x+z\right)\\ =\left(8x^3y^2+y^2z^3\right)+\left(4x^2y^3-y^3z^2\right)+x^2z^2\left(2x+z\right)\\ =y^2\left(2x+z\right)\left(4x^2-2xz+z^2\right)+y^3\left(2x-z\right)\left(2x+z\right)+x^2z^2\left(2x+z\right)\\ =\left(2x+z\right)\left(4x^2y^2-2xyz+y^2z^2+2xy^3-2y^3z+x^2z^2\right)\)
Từ đây chịu thôi ;-;
1. a3 b3 c3 3abc2. a10 a5 13. a8 a 14. a8 a7 15. a16 a8b8 b166. a 1 a 3 a 5 a 7 157. 4x2y2 2x y y2z2 z y x2z2 2x z 8. be a b b c ac b d a c ab c d a b 9. x y 3 y z 3 z x 310. x4 6x3 7x2 6x 1
3 3 3 3 3 3 3 3 3 3 3 3 3
các bạn giúp mik với (giúp đc nhiều thì giúp mai nộp rồi)
Bài 1.Tính:
a) (a2- 4)(a2+4) b) (a-b+c)(a+b+c) g) (a – 5)(a2 + 10a + 25)c) (a-b)(a+b)(a2+b2)(a4+b4) d) (3x+y-2)2 h) (x2- 4x + 16)(x+4)
e) (22 - 1)(22 +1)(24 + 1)(28 + 1) f) (x+y)3 - (x-y)3 k)
Bài 2: Tìm x biết:
a) (2x + 1)2 - 4(x + 2)2 = 9;
b) (x -2)2 – (x +3)2 = 45
c) (x - 3)(x2 + 3x + 9) + x(x + 2)(2 - x) = 1;
d) (x + 1)3 - (x - 1)3 - 6(x - 1)2 = -10
Bài 3.Biết số tự nhiên x chia cho 7 dư 6.CMR:x2 chia cho 7 dư 1
Bài 4. So sánh:
a) A = 1997 . 1999 và B = 19982
b)A = 4(32 + 1)(34 + 1)…(364 + 1) và B = 3128 - 1
Bài 5: Cho tam giác ABC các đường trung tuyến BD và CE cắt nhau ở G . gọi I, K theo thứ tự là trung điểm của GB, GC. Chứng minh rằng DE // IK, DE = IK
Bài 6: Cho tam giác ABC. Trên cạnh AB lấy hai điểm M, N sao cho AM = MN = NB. Từ M và N kẻ các đường thẳng song song với BC, chúng cắt AC tại E và F. Tính độ dài các đoạn thẳng NF và BC biết ME = 5cm.
Bài 7: Cho D ABC có BC =4cm, các trung tuyến BD, CE. Gọi M,N theo thứ tự là trung điểm của BE,CD. Gọi giao điểm của MN với BD,CE theo thứ tự là P, Q
a) Tính MN b) CMR: MP =PQ =QN
Bài 8: Cho hình thang ABCD (AB // CD) các tia phân giác góc ngoài đỉnh A và D cắt nhau tại H. Tia phan giác góc ngoài đỉnh B và C cắt nhau ở K. CMR:
a) AH ^ DH ; BK ^ CK
b) HK // DC
c) Tính độ dài HK biết AB = a ; CD = b ; AD = c ; BC = dBài 1.Tính:
\(a,=a^8-16\\ b,\left(a+c\right)^2-b^2=a^2+2ac+c^2-b^2\\ c,=\left(a^2-b^2\right)\left(a^2+b^2\right)\left(a^4+b^4\right)\\ =\left(a^4-b^4\right)\left(a^4+b^4\right)=a^8-b^8\\ d,=\left[\left(3x+y\right)-2\right]^2=\left(3x+y\right)^2-4\left(3x+y\right)+4\\ =9x^2+6xy+y^2-12x-4y+4\\ h,=x^3+64\\ e,=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\\ =\left(2^8-1\right)\left(2^8+1\right)=2^{16}-1=...\\ f,=\left(x+y-x+y\right)\left[\left(x+y\right)^2+\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\\ =2y\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)\\ =2y\left(3x^2+y^2\right)\)
e đăng đừng Ctrl+V nhiều quá lóe mắt :vv
\(2,\\ a,\Rightarrow4x^2+4x+1-4x^2-16x-16=9\\ \Rightarrow-12x=24\Rightarrow x=-2\\ b,\Rightarrow x^2-4x+4-x^2-6x-9=45\\ \Rightarrow-10x=50\Rightarrow x=-5\\ c,\Rightarrow x^3-27+4x-x^3=1\\ \Rightarrow4x=28\Rightarrow x=7\\ d,\Rightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+12x-6=-10\\ \Rightarrow12x=-6\Rightarrow x=-\dfrac{1}{2}\)
a,Chứng minh bđt:
1,(a-1)(a-3)(a-4)(a-6)+9 ≥ 0
2,a2/b+c-a+b2/c+a-b+c2/a+b-c ≥ a+b+c (a,b,c là độ dài 3 cạnh tam giác)
b,Cho a2-4a+1=0.Tính giá trị của biểu thức A=a4+a2+1/a2
c,Cho a,b,c thỏa mãn 1/a+1/b+1/c=1/a+b+c.Tính giá trị của biểu thức M=(a5+b5)(b7+c7)(c2013+a2013)
1: (a-1)(a-3)(a-4)(a-6)+9
=(a^2-7a+6)(a^2-7a+12)+9
=(a^2-7a)^2+18(a^2-7a)+81
=(a^2-7a+9)^2>=0
b: \(A=\dfrac{a^4-4a^3+a^2+4a^3-16a+4+16a-3}{a^2}=\dfrac{16a-3}{a^2}\)
a^2-4a+1=0
=>a=2+căn 3 hoặc a=2-căn 3
=>A=11-4căn 3 hoặc a=11+4căn 3
a4 mb4 m-(a mb m+1)(a2 mb2 m+1)(a mb m-1)
Ta có:a4 mb4 m-(a mb m+1)(a2 mb2 m+1)(a mb m-1)
= a4 mb4 m-(a 2mb 2m-1)(a2 mb2 m+1)
= a4 mb4 m-(a 4mb 4m-1)
= 1
Ta có:a4 mb4 m-(a mb m+1)(a2 mb2 m+1)(a mb m-1)
= a4 mb4 m-(a 2mb 2m-1)(a2 mb2 m+1)
= a4 mb4 m-(a 4mb 4m-1)
= 1
tìm a1;a2;a3;a4;a5;a6;a7;a8;a9 biết:
\(\frac{a_1-1}{9}=\frac{a_2-2}{8}=....=\frac{a_3-9}{1}\)
và:
\(a1+a2+a3+a4+a5+a6+a7+a8+a9=90\)
Cho sơ đồ các chuỗi phản ứng sau:
(1) A 1 + A 2 → A 3 + H 2
(2) A 3 + A 4 → FeCl 3
(3) A 5 + FeCl 3 → A 3 + I 2 + A 2
(4) A 2 + A 6 → t o MnCl 2 + A 7 + A 4
5) A 4 + A 8 → 30 0 CaOCl 2 + A 7
Các chất A 2 , A 3 , A 6 lần lượt là
A. HCl, FeCl 2 , MnO 2
B. Fe, FeCl 2 , KMnO 4
C. HCl, FeCl 3 , MnO 2
D. Fe, FeCl 3 , KMnO 4