Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ngọc Khánh Linh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 4 2019 lúc 14:55

Phương trình  1 ⇔ x + y 2 x - y = 0 ⇔ x = − y 2 x = y

Trường hợp 1:  x = - y  thay vào (2) ta được  x 2 - 4 x + 3 = 0 ⇔ x = 1 x = 3

Suy ra hệ phương trình có hai nghiệm là (1; −1), (3; −3).

Trường hợp 2:  2 x = y  thay vào (2) ta được  - 5 x 2 + 17 x + 3 = 0  phương trình này không có nghiệm nguyên.

Vậy các cặp nghiệm (x; y) sao cho x, y đều là các số nguyên là (1; −1) và (3; −3).

Đáp án cần chọn là: C

Nguyen Minh Anh
Xem chi tiết
nthv_.
20 tháng 11 2021 lúc 10:35

\(A=3x^3-6x^2+9x-3x^3+2x^2+5x^2-5x=x^2+4x\\ B=\left(x^2+xy+y^2\right)\left(x-y\right)=x^3-y^3\)

Pika Pika
Xem chi tiết
ngtt
Xem chi tiết
Toru
13 tháng 9 2023 lúc 21:30

1.

\(a,\left(-xy\right)\left(-2x^2y+3xy-7x\right)\)

\(=2x^3y^2-3x^2y^2+7x^2y\)

\(b,\left(\dfrac{1}{6}x^2y^2\right)\left(-0,3x^2y-0,4xy+1\right)\)

\(=-\dfrac{1}{20}x^4y^3-\dfrac{1}{15}x^3y^3+\dfrac{1}{6}x^2y^2\)

\(c,\left(x+y\right)\left(x^2+2xy+y^2\right)\)

\(=\left(x+y\right)^3\)

\(=x^3+3x^2y+3xy^2+y^3\)

\(d,\left(x-y\right)\left(x^2-2xy+y^2\right)\)

\(=\left(x-y\right)^3\)

\(=x^3-3x^2y+3xy^2-y^3\)

2.

\(a,\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(=x^3-y^3\)

\(b,\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=x^3+y^3\)

\(c,\left(4x-1\right)\left(6y+1\right)-3x\left(8y+\dfrac{4}{3}\right)\)

\(=24xy+4x-6y-1-24xy-4x\)

\(=\left(24xy-24xy\right)+\left(4x-4x\right)-6y-1\)

\(=-6y-1\)

#Toru

Nobody
Xem chi tiết
Ngô Chi Lan
18 tháng 8 2020 lúc 8:00

a) \(xy+3x+y=8\)

\(\Leftrightarrow\left(xy+3x\right)+\left(y+3\right)=11\)

\(\Leftrightarrow x\left(y+3\right)+\left(y+3\right)=11\)

\(\Leftrightarrow\left(x+1\right)\left(y+3\right)=11=1.11=\left(-1\right).\left(-11\right)\)

Ta xét các TH sau:

\(\hept{\begin{cases}x+1=1\\y+3=11\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=8\end{cases}}\)

\(\hept{\begin{cases}x+1=11\\y+3=1\end{cases}}\Rightarrow\hept{\begin{cases}x=10\\y=-2\end{cases}}\)

\(\hept{\begin{cases}x+1=-1\\y+3=-11\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\y=-14\end{cases}}\)

\(\hept{\begin{cases}x+1=-11\\y+3=-1\end{cases}}\Rightarrow\hept{\begin{cases}x=-12\\y=-4\end{cases}}\)

Vậy ta có 4 cặp số (x;y) thỏa mãn: (0;8) ; (10;-2) ; (-2;-14) ; (-12;-4)

Khách vãng lai đã xóa
Khánh Ngọc
18 tháng 8 2020 lúc 8:03

a. xy + 3x + y = 8

=> x ( y + 3 ) + ( y + 3 ) = 8 + 3 = 11

=> ( x + 1 ) ( y + 3 ) = 11

 x + 1 y + 3 x y
 11 1 10 - 2
 1  11 0 8
 - 11 - 1 - 12 - 4
 - 1 - 11 - 2 - 14

Vậy các cặp ( x ; y ) thỏa mãn đề bài là ( 10 ; - 2 ) ; ( 0 ; 8 ) ; ( - 12 ; - 4 ) ; ( - 2 ; - 14 )

b. Không rõ đề

Khách vãng lai đã xóa
Ngô Chi Lan
18 tháng 8 2020 lúc 8:06

b) \(x^2+y^2+2x-4y=5\)

\(\Leftrightarrow\left(x^2+2x+1\right)+\left(y^2-4y+4\right)=10\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-2\right)^2=10=1^2+3^2=1+9\)

Mà x,y nguyên và \(\left(x+1\right)^2;\left(y-2\right)^2\) là các SCP nên ta xét các TH sau:

\(\hept{\begin{cases}\left(x+1\right)^2=1\\\left(y-2\right)^2=9\end{cases}}\) => \(\orbr{\begin{cases}x+1=1\\x+1=-1\end{cases}}\) và \(\orbr{\begin{cases}y-2=3\\y-2=-3\end{cases}}\)

=> \(\orbr{\begin{cases}x=0\\x=-2\end{cases}}\) và \(\orbr{\begin{cases}y=5\\y=-1\end{cases}}\)

\(\hept{\begin{cases}\left(x+1\right)^2=9\\\left(y-2\right)^2=1\end{cases}}\) => \(\orbr{\begin{cases}x+1=3\\x+1=-3\end{cases}}\) và \(\orbr{\begin{cases}y-2=1\\y-2=-1\end{cases}}\)

=> \(\orbr{\begin{cases}x=2\\x=-4\end{cases}}\) và \(\orbr{\begin{cases}y=3\\y=1\end{cases}}\)

Vậy ta có các cặp số (x;y) thỏa mãn: (0;5) ; (0;-1) ; (-2;5) ; (-2;-1) ; (2;3) ; (2;1) ; (-4;3) ; (-4;1)

Khách vãng lai đã xóa
Dương Thị Thu Hiền
Xem chi tiết
Chương Phan
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 11 2021 lúc 14:35

Câu 1; B

Câu 2: B

Thao Cao Phuong
Xem chi tiết
Akai Haruma
13 tháng 11 2023 lúc 18:00

Yêu cầu đề là gì vậy bạn?