Cho mình hỏi có trọng tâm của lục giác không ạ
Cho lục giác đều ABCDEF tâm O . Hỏi có bao nhiêu vecto khác vecto không ; cùng phương O C → với có điểm đầu và điểm cuối là các đỉnh của lục giác?
A. 3
B. 5
C. 6
D. 8

Các vecto cùng phương O C → với có điểm đầu và điểm cuối là các đỉnh của lục giác
: .
Chọn C.
Cho lục giác đều ABCDEF tâm O . Hỏi có bao nhiêu vecto khác vecto không; cùng phương với O C → có điểm đầu và điểm cuối là các đỉnh của lục giác?
A. 3
B. 5
C. 6
D. 8
Chọn C.

Các vecto cùng phương với
có điểm đầu và điểm cuối là các đỉnh của lục giác : ![]()
Cho tam giác ABC có diện tích 30cm2. G là trọng tâm của tam giác. Tính diện tích tam giác BGC.
giải rõ ra giùm mình ạ TvT
Kẻ trung tuyến AM
\(\Rightarrow S_{ABM}=S_{ACM}=\dfrac{1}{2}S_{ABC}=15\left(cm^2\right)\)
Lại có \(\dfrac{MG}{AG}=\dfrac{1}{3}\Rightarrow\dfrac{S_{BGM}}{S_{ABM}}=\dfrac{S_{CGM}}{S_{ACM}}=\dfrac{MG}{AG}=\dfrac{1}{3}\)
\(\Rightarrow S_{BGM}=S_{CGM}=\dfrac{1}{3}\cdot S_{ABM}=5\left(cm^2\right)\\ \Rightarrow S_{BGC}=S_{BGM}+S_{CGM}=10\left(cm^2\right)\)
Mọi người cứu mình gấp với ạ :((
Cho tam giác ABC. Tại mỗi đỉnh của tam giác đặt một con kiến. Chúng bò từ A đến B, từ B đến C, từ C đến A. CMR tại mọi thời điểm, tam giác tạo bởi 3 con kiến có trọng tâm không đổi.
Cho lục giác đều ABCDEF. Chứng minh rằng hai tam giác ACE và BDF có cùng trọng tâm.
Cho tam giác ABC có G là trọng tâm. Phân tích BA theo BC và GC
Giải chi tiết cho mình với ạ
Lời giải:
Gọi $AE$ là đường trung tuyến của tam giác $ABC$ thì $E$ là trung điểm của $BC$
\(\overrightarrow{BA}=\overrightarrow{BC}+\overrightarrow{GA}=\overrightarrow{BC}+2\overrightarrow{EG}\\ =\overrightarrow{BC}+2(\overrightarrow{EC}+\overrightarrow{CG})\\ =\overrightarrow{BC}+2\overrightarrow{EC}+2\overrightarrow{CG}\\ =\overrightarrow{BC}+\overrightarrow{BC}-2\overrightarrow{GC}\\ =2\overrightarrow{BC}-2\overrightarrow{GC}\)
Hỏi trọng tâm của một tam giác bất kỳ có cách đều 3 cạnh của nó hay không ?
Hỏi trọng tâm của một tam giác đều có cách đều ba cạnh của nó hay không? Vì sao?

- Gọi G là trọng tâm ΔABC đều
AM, BN, CP là các đường trung tuyến của ΔABC
Theo tính chất trọng tâm tam giác :

Vì ΔABC đều nên ba trung tuyến AM = BN = CP (áp dụng chứng minh bài 29)
Suy ra: GA = GB = GC
Và AM – GA = BN – GB = CP – GC hay GM = GN = GP
- ΔANG và ΔCNG
GN chung
GA = GC (chứng minh trên)
NA = NC ( N là trung điểm AC)
⇒ ΔANG = ΔCNG (c.c.c)

⇒ GN ⊥ AC tức là GN là khoảng cách từ G đến AC.
Chứng minh tương tự GM, GP là khoảng cách từ G đến BC, AB.
- Mà GM = GN = GP (chứng minh trên)
Vậy G cách đều ba cạnh của tam giác ABC.