cho tam giac ABC vuong tai A,duong cao AH 1,HB=2,HC=6 a,tinh AB, AH b,goc C va gocB cua tam giac ABC 2,goi E,Flan luot la hinh chieu cua H tren AB,AC.chung minhAB mu 3 tren AC mu 3=BE tren CF. giai cau 2 ho minh nhe canh nhanh cang tot thank ae.
cho tam giac abc vuong tai a, co duong cao ah ( h thuoc bc ), biet ah=6cm,hc-hb=9cm.Tinh hb,hc
Ta có: \(HC-HB=9\Rightarrow HC=9+HB\)
tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng
\(\Rightarrow AH^2=HB.HC=HB\left(HB+9\right)\Rightarrow HB^2+9HB=36\)
\(\Rightarrow HB^2+9HB-36=0\Rightarrow\left(HB-3\right)\left(HB+12\right)=0\)
mà \(HB>0\Rightarrow HB=3\left(cm\right)\Rightarrow HC=3+9=12\left(cm\right)\)
Ta có: HC-HB=9(gt)
nên HB=HC-9
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(HB\cdot HC=AH^2\)
\(\Leftrightarrow HC\left(HC-9\right)-36=0\)
\(\Leftrightarrow HC^2-9HC-36=0\)
\(\Leftrightarrow HC^2-12HC+3HC-36=0\)
\(\Leftrightarrow\left(HC+3\right)\left(HC-12\right)=0\)
\(\Leftrightarrow HC=12\left(cm\right)\)
\(\Leftrightarrow HB=HC-9=12-9=3\left(cm\right)\)
cho tam giac ABC vuong tai A duong cao AH tinh chu vi cua tam giac ABC biet AH=14cm HB/HC=1/4
cho tam giac ABC vuong tai A , duong cao AH ,HB = 3,6 cm ,HC = 6,4 cm . Tinh AB , AC ,AH
Ta có BC=HB+HC=3,6+6,4=10(cm)
Xét △ABC vuông tại A đường cao AH:
AB2=BC.HB=10.3,6=36⇒AB=6(cm)
AC2=BC.HC=10.6,4=64⇒AC=8(cm)
\(AC.AB=BC.AH\Rightarrow AH=\dfrac{AC.AB}{BC}=\dfrac{6.8}{10}=4,8\left(cm\right)\)
cho tam giac ABC vuong tai A duong cao AH. Biet AB=4cm, AC=7,5cm. Tinh HB, HC
cho tam giac ABC vuong tai A duong cao AH
AC=? HB=? HC=? KHI AB=8cm HC-HB=8cm
mn jup mk nha
Cho tam giac ABC vuong tai A cho AH la duong cao, HB-HC=AB
Chung minh BC=2AB
Cho tam giac ABC nhon co ba duong cao ha hb hc cmr 1/ha =1/ hb + 1/hc thi tam giac ABC vuong tai A
cho tam giac abc vuong tai a, duong cao ah
a. chung minh tam giac hba dong dang voi tam giac abc
b. chung minh ah^2 =hb* hc
c. tia phan giac cua goc ahc cat ac tai d . chung minh \(\frac{hb}{hc}\)=\(\frac{ad^2}{dc^2}\)
1. cho tam giac ABC vuong tai A , duong cao AH . I,K lan luot la trung diem cua AB va AC. Tinh HB, HC,AH va dien tich tu giac AIHK biet HI 9cm, HK= 12cm
cho tam giac ABC vuong tai A duong cao AH ten tia HC lay diem D sao cho HD=HB
a) Tam giac ABC la tam giac gi Vi sao . Neu goc C=30 thi tam giac ABD la tam giac gi
b) Tu Cve duong thang vuong goc voi tia AD tai M . CM: CB la tia phan giac ACM
c) Tia AH cat CM tai Q . CM tam giac ACQ can
d) CM: QD vuong goc voi AC
a: Xét ΔABD có
AH là đường cao
AH là đường trung tuyến
DO đó; ΔABD cân tại A
b: Ta có: \(\widehat{MCB}=90^0-\widehat{CDM}\)
\(\widehat{ACB}=90^0-\widehat{ABC}=90^0-\widehat{ADH}=90^0-\widehat{CDM}\)
=>góc MCB=góc ACB
hay CB là phân giác của góc AMC
c: Xét ΔCAQ có
CH là đường phân giác
CH là đường cao
Do đó: ΔCAQ cân tại C