Cho \(x^3+y^3=0\). Tìm GTNN của biểu thức P = \(10x^4+8y^2-15xy+6x^2+5y^2+2017\)
Cho x3+y3=0. Tìm GTNN của biểu thức P= 10x4+8y2-15xy+6x2+5y2+2017.
Cho 2 số thực x,y thỏa mãn (x+\(\sqrt{x^2+1}\))(y+\(\sqrt{y^2+1}\))=1. Tìm giá trị nhỏ nhất của biểu thức
M =10x4 +8y4-15xy+6x2 +5y2+2017.
cho x, y thỏa mãn:
\(\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)
tìm min M\(=10x^4+8y^4-15xy+6x^2+5y^2+2017\)
Nhân biểu thức liên họp từng só vào phương trình
\((x-\sqrt{x^2+1})(x+\sqrt{x^2+1})(y+\sqrt{y^2+1})=x-\sqrt{x^2+1} \)
<=>\(y+\sqrt{y^2+1}=x-\sqrt{x^2+1} \)
Cmtt=>\(x+\sqrt{x^2+1}=y-\sqrt{y^2+1} \)
Trừ vế với vế=> 2(x-y)=0
<=> x-y=0
<=>x=y
=> M=\(18x^4-15x^2+6x^2+5x^2+2017\)
= \(18x^4-4x^2+2017\)
=\(2(9x^4-2x^2+\frac{1}{9} )+2017-\frac{2}{9} \)
=\(2(3x^2-\frac{1}{3})^2+2017-\frac{2}{9} \)
Min M= \(2017-\frac{2}{9} \)<=>\(3x^2=\frac{1}{3} \)
<=>\(x^2=\frac{1}{9} \)
<=>x=y=\(+-\frac{1}{3} \)
cho x, y\(\in R\)thoa man \(\left(X+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)
Tim min, max cua M=\(10x^4+8y^4-15xy+6x^2+5y^2+2017\)
1) Tìm GTNN của biểu thức:
a)F=x^2-4x+y^2-8y+6
b)G=x^2-4xy+5y^2+10x-22y+28
Mik đag cần gấp mog các bn giúp đỡ!
a,<=> x2-4x+22+y2-8y+42-14
<=> (x2-2x2+22)+(y2-2x4+42)-14
<=> (x-2)2+(y-4)2-14
Vì (x-2)2+(y-4)2>= 0
=> F >= -14 => MIn F = -14 <=> x=2, y=4
b, <=> (x2+52+(2y)2-4xy+10x-20y) +(y2-2y+1)+2
<=> (x+5-2y )2+(y-1)2+2
Vì (x+5-2y) 2+(y-1)2 >= 0
=> G >= 2 => Min =2 <=> y=1, x= -3
\(F=x^2-4x+y^2-8y+6\)
\(F=\left(x^2-2.2x+2^2\right)+\left(y^2-2.4.y+4^2\right)-14\)
\(F=\left(x-2\right)^2+\left(y-4\right)^2-14\)
Ta có: \(\left(x-2\right)^2\ge0\forall x\)
\(\left(y-4\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\forall x\)
\(F=-14\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2=0\\\left(y-4\right)^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=4\end{cases}}\)
Vậy \(F_{min}=-14\Leftrightarrow\hept{\begin{cases}x=2\\y=4\end{cases}}\)
Tìm GTNN của biểu thức sau: a) A= x^2-2x+y^2+4y+8 b) B= x^2-4x+y^2-8y+6 c) C= x^-4xy+5y^2+10x-22y+28
a: \(A=x^2-2x+1+y^2+4y+4+3\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+3>=3\)
Dấu '=' xảy ra khi x=1 và y=-2
b: \(B=x^2-4x+4+y^2-8y+16-14\)
\(=\left(x-2\right)^2+\left(y-4\right)^2-14>=-14\)
Dấu '=' xảy ra khi x=2 và y=4
Tìm GTNN của biểu thức :
D=(x-1)(x+2)(x+3)(x+6)
E=\(x^2-2x+y^2+4y+8\)
F=\(x^2-4x+y^2-8y+6\)
G=\(x^2-4xy+5y^2+10x-22y+28\)
Tìm GTNN của biểu thức sau:
M=2x^2+9y^2-6xy-6x-12y+2028
N=x^2-4xy+5y^2+10x-22y+28
Giúp mk với
\(M=2x^2+9y^2-6xy-6x-12y+2028\\ =3\left(x^2-2xy+y^2\right)-\left(x^2+6x+9\right)+6\left(y^2-2y+1\right)+2025\\ =\left(x-y\right)^2-\left(x-3\right)^2+6\left(y-1\right)^2+2025\ge2025\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=3\\y=1\end{matrix}\right.\) (vô lí) nên dấu \("="\) ko thể xảy ra
\(N=x^2-4xy+5y^2+10x-22y+28\\ =\left(x^2+4y^2+25-4xy-20y+10x\right)+\left(y^2-2y+1\right)+2\\=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-2y=5\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=1\end{matrix}\right.\)
\(M=2x^2+9y^2-6xy-6x-12y+2028=\left(x+2\right)^2-6y\left(x+2\right)+9y^2+\left(x-5\right)^2+1999=\left(x+2-3y\right)^2+\left(x-5\right)^2+2019\ge1999\)
\(ĐTXR\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=\dfrac{7}{3}\end{matrix}\right.\)
\(N=x^2-4xy+5y^2+10x-22y+28=\left(x+5\right)^2-4y\left(x+5\right)+4y^2+\left(y-1\right)^2+2=\left(x+5-2y\right)^2+\left(y-1\right)^2+2\ge2\)
\(ĐTXR\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)
tìm giá trị nhỏ nhất của biểu thức
a, A=x^2-6x+11
b, B=x^2-20x+101
c, C= x^2-6x+11
d, D= (x-1)(x+2)(x+3)(x+6)
e,E= x^2-2x+y^2+4y+8
f, x^2-4x+y^2-8y+6
g, G=x^2-4xy+5y^2+10x-22y+28
a/ Ta có:
\(A=x^2-6x+11\)
\(A=x\cdot x-3x-3x+3\cdot3+2\)
\(A=x\left(x-3\right)-3\left(x-3\right)+2\)
\(A=\left(x-3\right)\left(x-3\right)+2\)
\(A=\left(x-3\right)^2+2\)
Vì \(\left(x-3\right)^2\ge0\)
Nên GTNN của \(\left(x-3\right)^2\)là 0
=> \(A_{min}=0+2=2\)
mình chỉ biết a. thôi
a) ta có : \(A=x^2-6x+11\)
\(A=x.x-3x-3x+3.3+2\)
\(A=x\left(x-3\right)-3\left(x-3\right)+2\)
\(A=\left(x-3\right)\left(x-3\right)+2\)
\(A=\left(x-3\right)^2+2\)
vì \(\left(x-3\right)^2\ge0\)
nên GTNN của \(\left(x-3\right)^2\)là \(0\)
\(\Rightarrow\)\(A_{min}\)\(=0+2=2\)
oOo Không đủ can đảm để oOo copy mà nói nhưu mk tự làm