Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phùng Thanh Huyền
Xem chi tiết
Nguyễn Bá Minh
26 tháng 12 2019 lúc 15:01

a.    x=(x-1)^2

b.    câu hỏi chưa xong kìa

Khách vãng lai đã xóa
Laura
26 tháng 12 2019 lúc 19:22

(x-1)3\(=\)(x-5)3

\(\Leftrightarrow\)(x-1)3-(x-1)5\(=\)0

\(\Leftrightarrow\)(x-1)3\([\)1-(x-1)2\(]\)\(=\)0

\(\Leftrightarrow\)(x-1)3\(=\)0 hoặc 1-(x-1)2\(=\)0

\(\Leftrightarrow\)x-1\(=\)0 hoặc x-1\(=\pm\)1

\(\Leftrightarrow\)x\(=\)1 hoặc x\(=\)2; x\(=\)0

Vậy x\(\in\){1;2;0}

b) (x-1)n\(=\)(x-1)n+2

\(\Leftrightarrow\)(x-1)n-(x-1)n+2\(=\)0

\(\Leftrightarrow\)(x-1)n\([\)1-(x-1)2\(]\)\(=\)0

\(\Leftrightarrow\)(x-1)n\(=\)0 hoặc (x-1)2\(=\)1

\(\Leftrightarrow\)x\(=\)1 hoặc x\(=\)2; x\(=\)0

Vậy x\(\in\){1;2;0}

Khách vãng lai đã xóa
Nguyễn Thị Ngọc Nhi
Xem chi tiết
Kiều Vũ Linh
8 tháng 11 2023 lúc 10:38

a) Đặt A = \(6^5.5-3^5\)

\(=\left(2.3\right)^5.5-3^5\)

\(=2^5.3^5.5-3^5\)

\(=3^5.\left(2^5.5-1\right)\)

\(=3^5.\left(32.5-1\right)\)

\(=3^5.159\)

\(=3^5.3.53⋮53\)

Vậy \(A⋮53\)

b) Đặt \(B=2+2^2+2^3+...+2^{120}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{119}+2^{120}\right)\)

\(=2.\left(1+2\right)+2^3.\left(1+2\right)+...+2^{119}.\left(1+2\right)\)

\(=2.3+2^3.3+...+2^{119}.3\)

\(=3.\left(2+2^3+...+2^{59}\right)⋮3\)

Vậy \(B⋮3\)

\(B=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{118}+2^{119}+2^{120}\right)\)

\(=2.\left(1+2+2^2\right)+3^4.\left(1+2+2^2\right)+...+2^{118}.\left(1+2+2^2\right)\)

\(=2.7+2^4.7+...+2^{118}.7\)

\(=7.\left(2+2^4+...+2^{118}\right)⋮7\)

Vậy \(B⋮7\)

\(B=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)\)

\(+...+\left(2^{116}+2^{117}+2^{118}+2^{119}+2^{120}\right)\)

\(=2.\left(1+2+2^2+2^3+2^4\right)+2^6.\left(1+2+2^2+2^3+2^4\right)\)

\(+2^{116}.\left(1+2+2^2+2^3+2^4\right)\)

\(=2.31+2^6.31+...+2^{116}.31\)

\(=31.\left(2+2^6+...+2^{116}\right)⋮31\)

Vậy \(B⋮31\)

\(B=\left(2+2^2+2^3+2^4+2^5+2^6+2^7+2^8\right)+\left(2^9+2^{10}+2^{11}+2^{12}+2^{13}+2^{14}+2^{15}+2^{16}\right)\)

\(+...+\left(2^{113}+2^{114}+2^{115}+2^{116}+2^{117}+2^{118}+2^{119}+2^{120}\right)\)

\(=2.\left(1+2+2^2+2^3+2^4+2^5+2^6+2^7\right)+2^9.\left(1+2+2^2+2^3+2^4+2^5+2^6+2^7\right)\)

\(+...+2^{113}.\left(1+2+2^2+2^3+2^4+2^5+2^6+2^7\right)\)

\(=2.255+2^9.255+...+2^{113}.255\)

\(=255.\left(2+2^9+...+2^{113}\right)\)

\(=17.15.\left(2+2^9+...+2^{113}\right)⋮17\)

Vậy \(B⋮17\)

Kiều Vũ Linh
8 tháng 11 2023 lúc 10:45

c) Đặt C = \(3^{4n+1}+2^{4n+1}\)

Ta có:

\(3^{4n+1}=\left(3^4\right)^n.3\)

\(2^{4n}=\left(2^4\right)^n.2\)

\(3^4\equiv1\left(mod10\right)\)

\(\Rightarrow\left(3^4\right)^n\equiv1^n\left(mod10\right)\equiv1\left(mod10\right)\)

\(\Rightarrow3^{4n+1}\equiv\left(3^4\right)^n.3\left(mod10\right)\equiv1.3\left(mod10\right)\equiv3\left(mod10\right)\)

\(\Rightarrow\) Chữ số tận cùng của \(3^{4n+1}\) là \(3\)

\(2^4\equiv6\left(mod10\right)\)

\(\Rightarrow\left(2^4\right)^n\equiv6^n\left(mod10\right)\equiv6\left(mod10\right)\)

\(\Rightarrow2^{4n+1}\equiv\left(2^4\right)^n.2\left(mod10\right)\equiv6.2\left(mod10\right)\equiv2\left(mod10\right)\)

\(\Rightarrow\) Chữ số tận cùng của \(2^{4n+1}\) là \(2\)

\(\Rightarrow\) Chữ số tận cùng của C là 5

\(\Rightarrow C⋮5\)

Kiều Vũ Linh
8 tháng 11 2023 lúc 10:53

d) Đặt \(D=75+\left(4^{2006}+4^{2005}+4^{2004}+...+1\right).25\)

Đặt \(E=4^{2006}+4^{2005}+4^{2004}+...+1\)

\(\Rightarrow4E=4^{2007}+4^{2006}+4^{2005}+...+4\)

\(\Rightarrow3E=4E-E\)

\(=\left(4^{2007}+4^{2006}+4^{2005}+...+4\right)-\left(4^{2006}+4^{2005}+4^{2004}+...+1\right)\)

\(=4^{2007}-1\)

\(\Rightarrow E=\dfrac{\left(4^{2007}-1\right)}{3}\)

\(\Rightarrow D=75+\dfrac{4^{2007}-1}{3}.25\)

Ta có:

\(4^{2007}=\left(4^2\right)^{1003}.4\)

\(4^2\equiv6\left(mod10\right)\)

\(\left(4^2\right)^{1003}\equiv6^{1003}\left(mod10\right)\equiv6\left(mod10\right)\)

\(\Rightarrow4^{2007}\equiv\left(4^2\right)^{1003}.4\left(mod10\right)\equiv6.4\left(mod10\right)\equiv4\left(mod10\right)\)

\(\Rightarrow\) Chữ số tận cùng của \(4^{2007}\) là 4

Nguyễn Văn Toàn
Xem chi tiết
⭐Hannie⭐
4 tháng 11 2023 lúc 16:53

`a, 8x=64`

`=>x= 64:8`

`=> x=8`

`b, (-5)x=25`

`=>x=25:(-5)`

`=>x=-5`

`c,4x+1=21`

`=>4x=21-1`

`=>4x=20`

`=>x=20:4`

`=>x=5`

`d, (-3)x-1=8`

`=>(-3)x=8+1`

`=>(-3)x=9`

`=>x=9:(-3)`

`=>x=(-3)`

Cíuuuuuuuuuu
Xem chi tiết
Lê Trang
19 tháng 6 2021 lúc 13:46

a) \(\Leftrightarrow x^2-36=64\)

\(\Leftrightarrow x^2=100\)

\(\Leftrightarrow x=\pm10\)

Vậy \(x=\pm10\)

b) \(\Leftrightarrow x^2-x-3x+3=0\)

\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)

Vậy \(x\in\left\{1;3\right\}\)

nguyễn  xuân ly
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 7 2021 lúc 23:45

a) Ta có: \(x^4+64\)

\(=x^4+16x^2+64-16x^2\)

\(=\left(x^2+8\right)^2-\left(4x\right)^2\)

\(=\left(x^2-4x+8\right)\left(x^2+4x+8\right)\)

b) Ta có: \(81x^4+4y^4\)

\(=81x^4+36x^2y^2+4y^4-36x^2y^2\)

\(=\left(9x^2+2y^2\right)^2-\left(6xy\right)^2\)

\(=\left(9x^2-6xy+2y^2\right)\left(9x^2+6xy+2y^2\right)\)

Nguyễn Lê Phước Thịnh
17 tháng 7 2021 lúc 23:49

c) Ta có: \(x^5+x+1\)

\(=x^5+x^2-x^2+x-1\)

\(=x^2\left(x^3+1\right)-\left(x^2-x+1\right)\)

\(=x^2\left(x+1\right)\left(x^2-x+1\right)-\left(x^2-x+1\right)\)

\(=\left(x^2-x+1\right)\left(x^3+x^2-1\right)\)

 

cù thị lan anh
Xem chi tiết
ha tran
14 tháng 10 2021 lúc 20:55

a,= (x+4)\(^3\)

b,= (x-2)\(^3\)

c,= x\(^3\)+8

d,=x\(^3\)-27

ha tran
14 tháng 10 2021 lúc 21:17

a,= x\(^3\)+3.4x\(^2\)+3.4\(^2\).x+4\(^3\)=(x+4)\(^3\)

b,= x\(^3\)-3.2.x\(^2\)+3.2\(^2\).x-2\(^3\)= (x-2)\(^3\)

còn c,d áp dụng HĐT là ra! ( đc chx bà nội)gianroi

Trần Tiến Đạt
Xem chi tiết
Yeutoanhoc
10 tháng 6 2021 lúc 15:55

`a)(x+5)^3=-64`

`(x+5)^3=(-4)^3`

`x+5=-4`

`x=-4-5=-9`

Vậy `x=-9`

`2)(2x-3)^3=8`(9 không được)

`(2x-3)^3=2^3`

`2x-3=2`

`2x=5`

`x=5/2`

Vậy `x=5/2`

_Jun(준)_
10 tháng 6 2021 lúc 15:57

a)\(\left(x+5\right)^3=64\)

\(\left(x+5\right)^3=4^3\)

\(x+5=4\)

\(x=4-5\)

\(x=-1\)

b) \(\left(2x-3\right)^3=9\)

\(\left(2x-3\right)^3=3^3\)

\(2x-3=3\)

\(2x=3+3\)

\(2x=6\)

\(x=\dfrac{6}{2}\)

\(x=3\)

Giải:

a) \(\left(x+5\right)^3=-64\) 

\(\Rightarrow\left(x+5\right)^3=\left(-4\right)^3\) 

\(\Rightarrow x+5=-4\) 

\(\Rightarrow x=-4-5\) 

\(\Rightarrow x=-9\) 

b) \(\left(2x-3\right)^3=8\) 

\(\Rightarrow\left(2x-3\right)^3=2^3\) 

\(\Rightarrow2x-3=2\) 

\(\Rightarrow2x=2+3\) 

\(\Rightarrow2x=5\) 

\(\Rightarrow x=5:2\) 

\(\Rightarrow x=\dfrac{5}{2}\)

Quach thanh tra
Xem chi tiết
Lê Thị Thuyết
Xem chi tiết
Hiền Thương
9 tháng 8 2021 lúc 11:25

A = 3 + 32 + 33 + ...+3100 

3A = 32 + 33 + 34 + ...+ 3101

3A - A = ( 32 + 33 + 34 + ...+ 3101 )  - ( 3 + 32 + 33 + ...+3100  ) 

 2A = 3101 - 3 

Thay vào 2A + 3 = 3n ta có 

 3101 - 3 + 3 = 3n

3101 = 3n

=> n = 101

Khách vãng lai đã xóa
tran pham bao thy
9 tháng 8 2021 lúc 11:29

A = 3 + 32 + 33 +....+ 3100

\(\Rightarrow\) 3A= 3.(3 + 32 + 33 +....+ 3100)

\(\Rightarrow\) 3A= 32 + 33 + 34 +.....+ 3101

\(\Rightarrow\)3A - A= (32 + 33 + 34 +.....+ 3101) - (3 + 32 + 33 +....+ 3100)

\(\Rightarrow\)2A= 3101 - 3

mà 2A + 3 = 3n

\(\Rightarrow\)3101 - 3 + 3 = 3n

\(\Rightarrow\)3101 = 3n

\(\Rightarrow\)n=101

Khách vãng lai đã xóa
Lê Minh Vũ
9 tháng 8 2021 lúc 18:03

\(A=3+3^2+3^3+3^{100}\)

\(3A=3^2+3^3+3^4+...+3^{101}\)

\(3A-A=\left(3^2+3^3+3^4+...+3^{101}\right)-\left(3+3^2+3^3+...+3^{100}\right)\)

\(2A=3^{101}-3\)

Mà \(2A+3=3^n\)

\(3^{101}-3+3=3^n\)

\(3^{101}=3^n\)

\(n=101\)

Khách vãng lai đã xóa