1, tính giá trị biểu thức \(\dfrac{4^{6^{ }}.9^5+6^9.120}{8^{4^{ }}.3^{12^{ }}-6^{11}}\)
Tính giá trị các biểu thức sau
4^6.9^5+6^9.120/8^4.3^12-6^11
\(\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\)
\(=\frac{\left(2^2\right)^6.\left(3^2\right)^5+\left(2.3\right)^9.2^3.3.5}{\left(2^3\right)^4.3^{12}-\left(2.3\right)^{11}}\)
\(=\frac{2^{12}.3^{10}+2^9.3^9.2^3.3.5}{2^{12}.3^{12}-2^{11}.3^{11}}\)
\(=\frac{2^{12}.3^{10}.\left(1+5\right)}{2^{11}.3^{11}.\left(2.3-1\right)}\)
\(=\frac{2.6}{3.5}\)
\(=\frac{4}{5}\)
Ta có: \(\frac{4^6\cdot9^5+6^9\cdot120}{8^4\cdot3^{12}-6^{11}}\)
\(=\frac{2^{12}\cdot3^{10}+2^3\cdot3\cdot5\cdot2^9\cdot3^9}{2^{12}\cdot3^{12}-2^{11}\cdot3^{11}}\)
\(=\frac{2^{12}\cdot3^{10}+2^{12}\cdot3^{10}\cdot5}{2^{12}\cdot3^{12}-2^{11}\cdot3^{11}}\)
\(=\frac{2^{12}\cdot3^{10}\cdot\left(1+5\right)}{2^{11}\cdot3^{11}\left(2\cdot3-1\right)}\)
\(=\frac{2\cdot6}{3\cdot5}=\frac{4}{5}\)
Tính giá trị biểu thức:
\(\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\)
\(\frac{4^6\cdot9^5+6^9\cdot120}{8^4\cdot3^{12}-6^{11}}=\frac{2^{12}\cdot3^{10}+2^9\cdot3^9\cdot2^3\cdot3\cdot5}{2^{12}\cdot3^{12}-6^{11}}\)
\(=\frac{2^{12}\cdot3^{10}+2^{12}\cdot3^{10}\cdot5}{6^{12}-6^{11}}\)
\(=\frac{2^{12}3^{10}\left(1+5\right)}{6^{11}\left(6-1\right)}\)
\(=\frac{2^{10}\cdot3^{10}\cdot5\cdot2^2}{6^{10}\cdot6\cdot5}\)
\(=\frac{6^{10}\cdot20}{6^{10}\cdot30}\)
\(=\frac{2}{3}\)
\(\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\) (Sau đó phân tách ra)
=\(\frac{\left(2^2\right)^6.\left(3^2\right)^5+\left(2.3\right)^9.\left(2^3.3.5\right)}{\left(2^3\right)^4.3^{12}-\left(2.3\right)^{11}}\)
=\(\frac{2^{12}.3^{10}+2^9.3^9.2^33.5}{2^{12}.3^{12}-2^{11}.3^{11}}\)
=\(\frac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{12}.3^{12}-2^{11}.3^{11}}\) (Gộp và giải như biểu thức thường)
=\(\frac{2^{12}.3^{10}.\left(1+1.5\right)}{2^{11}.3^{11}.\left(2.3-1\right)}\)
=\(\frac{2^{12}.3^{10}.6}{2^{11}.3^{11}.5}\) (Rút gọn giữa tử và mẫu)
=\(\frac{2.1.6}{1.3.5}=\frac{2.1.2}{1.1.5}=\frac{4}{5}\)
Tính giá trị biểu thức sau :
\(\frac{4^6.9^5+6^9.120}{-8^4.3^{12}-6^{11}}\)
\(\frac{4^6.9^5+6^9.120}{-8^4.3^{12}-6^{11}}=\frac{\left(2^2\right)^6.\left(3^2\right)^5+\left(2.3\right)^9.2^3.3.5}{-\left(2^3\right)^4.3^{12}-\left(2.3\right)^{11}}=\frac{2^{12}.3^{10}+2^9.3^9.2^3.3.5}{-2^{12}.3^{12}-2^{11}.3^{11}}\)
\(=\frac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{23}.3^{23}}=\frac{2^{12}.3^{10}\left(1+5\right)}{2^{23}.3^{23}}=\frac{6}{2^{11}.3^{13}}=\frac{2.3}{2^{11}.3^{12}}=\frac{1}{2^{10}.3^{11}}=\frac{1}{6^{10}.3}\)
Rút gọn biểu thức: \(A=\dfrac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\)
\(\dfrac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\)
\(=\dfrac{2^{12}.3^{10}+2^9.3^9.2^3.3.5}{2^{12}.3^{12}-2^{11}.3^{11}}\)
\(=\dfrac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{11}.3^{11}\left(2.3-1\right)}\)
\(=\dfrac{2^{12}.3^{10}\left(1+5\right)}{2^{11}.3^{11}.5}\)
\(=\dfrac{2^{12}.3^{10}.6}{2^{11}.3^{11}.5}=\dfrac{2.6}{3.5}=\dfrac{4}{5}\)
\(A=\dfrac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}=\dfrac{\left(2^2\right)^6.\left(3^2\right)^5+6^9.6.2^2.5}{\left(2^3\right)^4.3^{12}-6^{11}}=\dfrac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{12}.3^{12}-2^{11}.3^{11}}=\dfrac{2^{11}.3^{10}\left(2^1+2^1.5\right)}{2^{11}.3^{10}\left(2^1.3^2-1.3^1\right)}=\dfrac{2+10}{2.9-1.3}=\dfrac{12}{15}=\dfrac{4}{5}\)
Tính giá trị của biểu thức :
B = \(\dfrac{4^6.9^5+6^9.120}{-8^4\cdot3^{12}+6^{11}}\)
Tính giá trị của biểu thức :
\(B=\dfrac{4^6\cdot9^5+6^9\cdot120}{-8^4\cdot3^{12}+6^{11}}\\ =\dfrac{2^{12}\cdot3^{10}+2^9\cdot3^9\cdot3\cdot5\cdot2^3}{-2^{12}\cdot3^{12}+2^{11}\cdot3^{11}}\\ =\dfrac{2^{12}\cdot3^{10}+2^{12}\cdot3^{10}\cdot5}{-2^{12}\cdot3^{12}+2^{11}\cdot3^{11}}\\ =\dfrac{2^{12}\cdot3^{10}\cdot\left(1+5\right)}{2^{11}\cdot3^{11}\cdot\left(-2\cdot3+1\right)}\\ =\dfrac{2\cdot6}{3\cdot\left(-5\right)}\\ =\dfrac{12}{-15}\\ =\dfrac{-4}{5}\)
I.Tính giá trị của các biểu thức sau bằng cách nhanh nhất :
A = 5/7.8/11 + 5/11.17/7 - 5/21.9/11
B = 1/2 + 1/3 + 1/6 + 1/12 + 1/15 + 1/20 + 1/30 + 1/35 + 1/42 + 1/56 + 1/63
C = 4^6.9^5+6^9.120/8^4.3^12-6^11
\(A=\dfrac{5}{7}.\dfrac{5}{11}+\dfrac{5}{7}.\dfrac{8}{11}-\dfrac{5}{7}.\dfrac{2}{11}\)
\(A=\dfrac{5}{7}.\left(\dfrac{5}{11}+\dfrac{8}{11}-\dfrac{2}{11}\right)\)
\(A=\dfrac{5}{7}.\dfrac{5+8-2}{11}\)
\(A=\dfrac{5}{7}.\dfrac{11}{11}\)
\(A=\dfrac{5}{7}.1=\dfrac{5}{7}\)
\(B=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{35}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{63}\)
\(B=\dfrac{95}{72}\)
\(C=\dfrac{4^6.9^5+6^9.120}{8^4-3^{12}-6^{11}}\)
\(C=\dfrac{\left(2^2\right)^3.\left(3^2\right)^5+\left(2.3\right)^9.2^3.3.5}{\left(2^3\right)^4.3^{12}-\left(2.3\right)^{11}}\)
\(C=\dfrac{2^{12}.3^{10}+2^9.3^9.2^3.3.5}{2^{12}.3^{12}-2^{11}.3^{11}}\)
\(C=\dfrac{2^{12}.3^{10}.\left(1+5\right)}{2^{11}.3^{11}.5}\)
\(C=\dfrac{2.6}{5.3}=\dfrac{12}{15}=\dfrac{4}{5}\)
tính giá trị biểu thức :\(\dfrac{3}{4}\) - \(\dfrac{5}{6}\) x ( \(\dfrac{1}{6}\)+ \(\dfrac{1}{8}\)) : \(\dfrac{7}{12}\)
\(=\dfrac{3}{4}-\dfrac{5}{6}\times\dfrac{7}{24}\times\dfrac{12}{7}=\dfrac{3}{4}-\dfrac{5}{12}=\dfrac{1}{3}\)
\(\dfrac{3}{4}-\dfrac{5}{6}\left(\dfrac{1}{6}+\dfrac{1}{8}\right):\dfrac{7}{12}\)
\(=\dfrac{3}{4}-\dfrac{5}{6}\cdot\dfrac{7}{24}\cdot\dfrac{12}{7}\)
\(=\dfrac{3}{4}-\dfrac{5}{12}\)
\(=\dfrac{4}{12}=\dfrac{1}{3}\)
Tính giá trị của biểu thức sau:
\(\dfrac{6}{7}+\dfrac{5}{8}:5-\dfrac{3}{16}.\left(-2\right)^2\)
\(\dfrac{2}{3}+\dfrac{1}{3}.\left(-\dfrac{4}{9}+\dfrac{5}{6}\right):\dfrac{7}{12}\)
\(\dfrac{6}{7}+\dfrac{5}{8}:5-\dfrac{3}{16}.\left(-2\right)^2=\dfrac{6}{7}+\dfrac{5}{8}:5-\dfrac{3}{16}.4=\dfrac{6}{7}+\dfrac{1}{8}-\dfrac{3}{4}=\dfrac{5}{56}\)
\(\dfrac{2}{3}+\dfrac{1}{3}.\left(-\dfrac{4}{9}+\dfrac{5}{6}\right):\dfrac{7}{12}=\dfrac{2}{3}+\dfrac{1}{3}.\dfrac{7}{18}:\dfrac{7}{12}=\dfrac{2}{3}+\dfrac{2}{9}=\dfrac{8}{9}\)
Câu 1: Tính giá trị biểu thức:
a.A=\(\left(\dfrac{136}{15}-\dfrac{28}{5}+\dfrac{62}{10}\right)\).\(\dfrac{21}{24}\)
b.B=\(\dfrac{5}{6}\)+6\(\dfrac{5}{6}\)\(\left(11\dfrac{5}{20}-9\dfrac{1}{4}\right)\):8\(\dfrac{1}{3}\)
c.C=1+3+6+10+15+...+1225.