Tính:
\(\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}-\sqrt{3-\sqrt{5}}\)
Tính
A=\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\cdot\sqrt{4-\sqrt{15}}\)
B=\(\left(3-\sqrt{5}\right)\cdot\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right)\cdot\sqrt{3-\sqrt{5}}\)
C=\(\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}\cdot\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{ }}3}}\)
D=\(\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}-2\sqrt{3-\sqrt{5}}\)
E=\(\frac{\sqrt{15-10\sqrt{2}}+\sqrt{13+4\sqrt{5}}-\sqrt{11+2\sqrt{10}}}{2\sqrt{3+2\sqrt{2}}+\sqrt{9-4\sqrt{2}}+\sqrt{12+8\sqrt{2}}}\)
a: \(A=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)
\(=32-8\sqrt{15}+8\sqrt{15}-30=2\)
b: \(\sqrt{2}\cdot B=\left(3-\sqrt{5}\right)\left(\sqrt{5}+1\right)+\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)\)
\(\Leftrightarrow B\sqrt{2}=3\sqrt{5}+3-5-\sqrt{5}+3\sqrt{5}-3+5-\sqrt{5}\)
\(\Leftrightarrow B\sqrt{2}=4\sqrt{5}\)
hay \(B=2\sqrt{10}\)
d: \(D\sqrt{2}=\sqrt{5}+\sqrt{3}+\sqrt{5}-\sqrt{3}-2\cdot\left(\sqrt{5}-1\right)\)
\(=2\sqrt{5}-2\sqrt{5}+2=2\)
hay \(D=\sqrt{2}\)
Thực hiện từng bước của phép tính:
1.\(\left(\sqrt{2}+1\right)^3-\left(\sqrt{2}-1\right)^3\)
2.\(\sqrt{4-\sqrt{15}}+\sqrt{4+\sqrt{15}}-2\sqrt{3-\sqrt{5}}\)
3.\(\dfrac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\dfrac{8}{1-\sqrt{5}}\)
4.\(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}\)
1.\(\left(\sqrt{2}+1\right)^3-\left(\sqrt{2}-1\right)^3=2\sqrt{2}+6+3\sqrt{2}+1-\left(2\sqrt{2}-6+3\sqrt{2}-1\right)=14\)
2.\(\sqrt{4-\sqrt{15}}+\sqrt{4+\sqrt{15}}-2\sqrt{3-\sqrt{5}}\)
\(=\sqrt{\dfrac{1}{2}\left(8-2\sqrt{3.}\sqrt{5}\right)}+\sqrt{\dfrac{1}{2}\left(8+2.\sqrt{3}.\sqrt{5}\right)}-\sqrt{2}\sqrt{6-2\sqrt{5}}\)
\(=\sqrt{\dfrac{1}{2}\left(\sqrt{3}-\sqrt{5}\right)^2}+\sqrt{\dfrac{1}{2}\left(\sqrt{3}+\sqrt{5}\right)^2}-\sqrt{2}\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=\dfrac{\sqrt{2}}{2}\left|\sqrt{3}-\sqrt{5}\right|+\dfrac{\sqrt{2}}{2}\left(\sqrt{3}+\sqrt{5}\right)-\sqrt{2}\left|\sqrt{5}-1\right|\)
\(=\dfrac{\sqrt{2}}{2}\left(\sqrt{5}-\sqrt{3}\right)+\dfrac{\sqrt{2}}{2}\left(\sqrt{3}+\sqrt{5}\right)-\sqrt{2}\left(\sqrt{5}-1\right)\)
\(=\sqrt{5}.\sqrt{2}-\sqrt{2}\left(\sqrt{5}-1\right)=\sqrt{2}\)
3.\(\dfrac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\dfrac{8}{1-\sqrt{5}}=\dfrac{\sqrt{20}\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}}+\dfrac{8\left(1+\sqrt{5}\right)}{1-\left(\sqrt{5}\right)^2}\)
\(=\sqrt{20}+\dfrac{8\left(1+\sqrt{5}\right)}{-4}=2\sqrt{5}-2\left(1+\sqrt{5}\right)=-2\)
4.\(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}\)
\(=\sqrt{\dfrac{4-2\sqrt{3}}{4+2\sqrt{3}}}+\sqrt{\dfrac{4+2\sqrt{3}}{4-2\sqrt{3}}}\)\(=\sqrt{\dfrac{\left(\sqrt{3}-1\right)^2}{\left(\sqrt{3}+1\right)^2}}+\sqrt{\dfrac{\left(\sqrt{3}+1\right)^2}{\left(\sqrt{3}-1\right)^2}}\)
\(=\dfrac{\left|\sqrt{3}-1\right|}{\sqrt{3}+1}+\dfrac{\sqrt{3}+1}{\left|\sqrt{3}-1\right|}=\dfrac{\sqrt{3}-1}{\sqrt{3}+1}+\dfrac{\sqrt{3}+1}{\sqrt{3}-1}\)
\(=\dfrac{\left(\sqrt{3}-1\right)^2+\left(\sqrt{3}+1\right)^2}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}=\dfrac{8}{3-1}=4\)
3: Ta có: \(\dfrac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\dfrac{8}{1-\sqrt{5}}\)
\(=\dfrac{2\sqrt{5}\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}}-\dfrac{8\left(\sqrt{5}+1\right)}{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}\)
\(=2\sqrt{5}-2\left(\sqrt{5}+1\right)\)
=-2
4) Ta có: \(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}\)
\(=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(2+\sqrt{3}\right)^2}\)
\(=2-\sqrt{3}+2+\sqrt{3}\)
=4
\(\sqrt{4-\sqrt{15}}+\sqrt{4+\sqrt{15}}-2\sqrt{3-\sqrt{5}}\)
tính (rút gọn )
(\(\sqrt{8-2\sqrt{15}}\)+ \(\sqrt{8+2\sqrt{15}}\)- \(2\sqrt{6-2\sqrt{5}}\))/2
= (\(\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)+ \(\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}\)- \(2\sqrt{\left(\sqrt{5}-1\right)^2}\))/2
= ( \(\sqrt{5}-\sqrt{3}+\sqrt{5}+\sqrt{3}\)\(-2\sqrt{5}+2\)) / 2
= 2/2 = 1
bài của TuanMinhAms sai nha
\(A=\sqrt{4-\sqrt{15}}+\sqrt{4+\sqrt{15}}-2\sqrt{3-\sqrt{5}}\)
\(\Rightarrow\)\(\sqrt{2}A=\sqrt{8-2\sqrt{15}}+\sqrt{8+2\sqrt{15}}-2\sqrt{6-2\sqrt{5}}\)
\(=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}-2\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=\sqrt{5}-\sqrt{3}+\sqrt{5}+\sqrt{3}-2\left(\sqrt{5}-1\right)=2\)
\(\Rightarrow\)\(A=\sqrt{2}\)
Tính
1, a = \(\sqrt[3]{45+26\sqrt{2}}+\sqrt[3]{45-29\sqrt{2}}\)
2, x = \(\sqrt[3]{4+\sqrt{80}-\sqrt[3]{\sqrt{80}-4}}\)
3, \(\left(4+\sqrt{15}\right)\cdot\left(\sqrt{10}-\sqrt{6}\right)\cdot\sqrt{4-\sqrt{15}}\)
4, \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
5, \(\sqrt{\frac{4-\sqrt{7}}{4+\sqrt{7}}}+\sqrt{\frac{4+\sqrt{7}}{4-\sqrt{7}}}\)
tính:
P=\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
Q=\(\left(3-\sqrt{5}\right)\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right)\sqrt{3-\sqrt{5}}\)
1) \(P=\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
\(=\left(4\sqrt{10}-4\sqrt{6}+\sqrt{150}-\sqrt{90}\right)\sqrt{4-\sqrt{15}}\)
\(=\left(4\sqrt{10}-4\sqrt{6}+5\sqrt{6}-3\sqrt{10}\right)\sqrt{4-\sqrt{15}}\)
\(=\left(\sqrt{10}+\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
\(=\sqrt{\left(\sqrt{10}+\sqrt{6}\right)^2}\sqrt{4-\sqrt{15}}\)
\(=\sqrt{\left(\sqrt{10}+\sqrt{6}\right)^2+\left(4-\sqrt{15}\right)}\)
\(=\sqrt{\left(10+2\sqrt{60}+6\right)\cdot\left(4-\sqrt{15}\right)}\)
\(=\sqrt{\left(10+4\sqrt{15}+6\right)\cdot\left(4-\sqrt{15}\right)}\)
\(=\sqrt{\left(16+4\sqrt{15}\right)\cdot\left(4-\sqrt{15}\right)}\)
\(=\sqrt{4\left(4+\sqrt{15}\right)\cdot\left(4-\sqrt{15}\right)}\)
\(=\sqrt{4\left(16-15\right)}\)
\(=\sqrt{4\cdot1}\)
\(=\sqrt{4}\)
\(=2\)
2) \(Q=\left(3-\sqrt{5}\right)\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right)\sqrt{3-\sqrt{5}}\)
\(=\sqrt{\left(3-\sqrt{5}\right)^2}\sqrt{3+\sqrt{5}}+\sqrt{\left(3+\sqrt{5}\right)^2}\sqrt{3-\sqrt{5}}\)
\(=\sqrt{\left(3-\sqrt{5}\right)^2\cdot\left(3+\sqrt{5}\right)}+\sqrt{\left(3+\sqrt{5}\right)^2\cdot\left(3-\sqrt{5}\right)}\)
\(=\sqrt{\left(9-6\sqrt{5}+5\right)\cdot\left(3+\sqrt{5}\right)}+\sqrt{\left(9+6\sqrt{5}+5\right)\cdot\left(3-\sqrt{5}\right)}\)
\(=\sqrt{\left(14-6\sqrt{5}\right)\cdot\left(3+\sqrt{5}\right)}+\sqrt{\left(9+6\sqrt{5}+5\right)\cdot\left(3-\sqrt{5}\right)}\)
\(=\sqrt{42+14\sqrt{5}-18\sqrt{5}-30}+\sqrt{42-14\sqrt{5}+18\sqrt{5}-30}\)
\(=\sqrt{12-4\sqrt{5}}+\sqrt{12+4\sqrt{5}}\)
Thực hiện phép tính:
a)\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
b)\(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}-\sqrt{2}\)
ưu tiên phương pháp bình phương :
a) \(\left(4+\sqrt{15}\right)^2\left(\sqrt{10}-\sqrt{6}\right)^2\left(\sqrt{4-\sqrt{15}}\right)^2\)
\(=\left(4+\sqrt{15}\right)^2\left(4-\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)^2\)
Tính ra kết quả nhớ căn đó
b) Phương pháp trục căn thức :
\(\frac{\sqrt{3+\sqrt{5}}\sqrt{3-\sqrt{5}}}{\sqrt{3-\sqrt{5}}}-\frac{\sqrt{3-\sqrt{5}}\sqrt{3+\sqrt{5}}}{\sqrt{3+\sqrt{5}}}-\sqrt{2}\)
Trên tử có hàng đẳng thức . bạn tự quy động là ra
a)\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
= \(\sqrt{4+\sqrt{15}}.\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right)\sqrt{4+\sqrt{15}}.\sqrt{4-\sqrt{15}}\)
= \(\sqrt{8+2\sqrt{15}}\left(\sqrt{5}-\sqrt{3}\right)\sqrt{4^2-\left(\sqrt{15}\right)^2}\)
=\(\sqrt{\left(\sqrt{5}\right)^2+2.\sqrt{5}.\sqrt{3}+\left(\sqrt{3}\right)^2}\left(\sqrt{5}-\sqrt{3}\right)\sqrt{16-15}\)
=\(\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}\left(\sqrt{5}-\sqrt{3}\right)\sqrt{1}\)
=\(\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)\)
= \(\left(\sqrt{5}\right)^2-\left(\sqrt{3}\right)^2\)
= \(5-3=2\)
Giup dum mik
Tính:
\(\left(3-\sqrt{5}\right)\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right)\sqrt{3-\sqrt{5}}\)\(\left(4+\sqrt{15}\right)\sqrt{4-\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right)\)\(\sqrt{3-\sqrt{5}}\sqrt{3-\sqrt{5}}\)\(\sqrt{3+\sqrt{5}}\)\(+\sqrt{3+\sqrt{5}}\sqrt{3+\sqrt{5}}\sqrt{3-\sqrt{5}}\)
=\(\sqrt{3-\sqrt{5}}\cdot\sqrt{3^2-5}+\sqrt{3+\sqrt{5}}\cdot\sqrt{3^2-5}\)=\(2\left(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\right)=\sqrt{2}\left(\sqrt{2\cdot3-2\sqrt{5}}+\sqrt{2\cdot3+2\sqrt{5}}\right)\) =\(=\sqrt{2}\left(\sqrt{5}-1+\sqrt{5}+1\right)=2\sqrt{10}\)
b tuong tu nha ban ^.^
(14,78-a)/(2,87+a)=4/1
14,78+2,87=17,65
Tổng số phần bằng nhau là 4+1=5
Mỗi phần có giá trị bằng 17,65/5=3,53
=>2,87+a=3,53
=>a=0,66.
Bài 1 : Tính
b) (3 - \(\sqrt{5}\)) . \(\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right).\sqrt{3-\sqrt{5}}\)
c) \(\left(4+\sqrt{15}\right).\sqrt{4-\sqrt{15}}.\left(\sqrt{10}-\sqrt{6}\right)\)
Tính:
\(\frac{2\sqrt{3}-1}{\sqrt{15}}-\frac{2-\sqrt{5}}{\sqrt{3}}-\frac{4\sqrt{15}-10\sqrt{3}}{15}\)
Cho \(x=\dfrac{\sqrt[3]{4+\sqrt{15}}+\sqrt[3]{4-\sqrt{15}}+1}{2}\)
Tính \(P=12x^5+18x^4+4x^3-15x^2-21\)
chắc bạn chép sai đề rồi , hai căn đầu phải 1 cộng 1 trừ chứ
Đặt
\(x=\dfrac{y+1}{2}\Rightarrow y=2x-1\)
\(\Rightarrow y=\sqrt[3]{4+\sqrt{15}}+\sqrt[3]{4-\sqrt{15}}\)
\(y^3=8+3\sqrt[3]{\left(4-\sqrt{15}\right)\left(4+\sqrt{15}\right)}=8+3y\)
\(\Rightarrow y^3-3y-8=0\\ \)
\(\Leftrightarrow8x^3-12x^2-6=0\)
\(\Rightarrow4x^3-6x^2-3=0\)
thay p vào ta có
\(P=12x^5-18x^4+4x^3-15x^2-21\)
\(=12x^5-18x^4-9x^2-4x^3-6x^2-21\)
\(=3x^2\left(4x^2-6x^2-3\right)+4x^3-6x^2-3\\ =3x^2.0+0-18\\ =-18\)