Rút gọn
A+b/ √a + √b với a, b dương a≠b
rút gọn : với a,b dương, ab ≠ 0
\(\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{ab}}.\dfrac{1}{\sqrt{a}+\sqrt{b}}\)
\(\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{ab}}.\dfrac{1}{\sqrt{a}+\sqrt{b}}\)
\(=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{\sqrt{ab}}.\dfrac{1}{\sqrt{a}+\sqrt{b}}\)
\(=\dfrac{a-\sqrt{ab}+b}{\sqrt{ab}}\)
Rút gọn biểu thức T = a 2 . ( a - 2 . b 3 ) . b - 1 ( a - 1 . b ) 3 . a - 5 . b - 2 với a, b là hai số thực dương
A. T = a 4 . b 6
B. T = a 6 . b 6
C. T = a 4 . b 4
D. T = a 6 . b 4
cho A=\(\left[\frac{1}{a^2}+\left(\frac{1}{a}+\frac{1}{b}\right):\frac{a+b}{2}+\frac{1}{b^2}\right].\frac{a^2b2}{a^3+b^3}:\left(a+b\right)\)
a, Rút gọn A.
b, Chứng minh A dương
Rút gọn hộ mình với đừng lướt qua thui nha, xin đó
a, ĐK: \(a\ne0,b\ne0,a+b\ne0\)
\(A=\left[\frac{1}{a^2}+\left(\frac{1}{a}+\frac{1}{b}\right):\frac{a+b}{2}+\frac{1}{b^2}\right].\frac{a^2b^2}{a^3+b^3}:\left(a+b\right)\)
\(=\left[\frac{1}{a^2}+\frac{a+b}{ab}:\frac{a+b}{2}+\frac{1}{b^2}\right].\frac{a^2b^2}{a^3+b^3}:\left(a+b\right)\)
\(=\left[\frac{1}{a^2}+\frac{2}{ab}+\frac{1}{b^2}\right].\frac{a^2b^2}{a^3+b^3}:\left(a+b\right)\)
\(=\frac{\left(a+b\right)^2}{a^2b^2}.\frac{a^2b^2}{\left(a+b\right)\left(a^2-ab+b^2\right)}.\frac{1}{a+b}\)
\(=\frac{1}{a^2-ab+b^2}\)
b, \(a^2-ab+b^2=\left(a-\frac{1}{2}b\right)^2+\frac{3}{4}b^2>0\left(a,b\ne0\right)\)
\(\Rightarrow A=\frac{1}{a^2-ab+b^2}>0\forall a;b\)
15. Tìm các số nguyên dương n nhỏ hơn 14 sao cho phân số n phần 14 có thể rút gọn được. Rút gọn phân số đó ứng với mỗi giá trị tìm được của n.
16. Viết các phân số tối giản a phần b (a>0, b>0), biết rằng ab = 36.
17.Tìm các phân số a phần b (a>0, b>0) có giá trị bằng: a) 21 phần 28, biết ƯCLN(a,b)=15 b) 21 phần 35, biết ƯCLN(a,b)=30. c) 36 phần 45, biết BCNN(a,b)=300. d) 15 phần 35, biết ƯCLN(a,b).BCNN(a,b)= 3549.
nhìn rối quá ạ :v tách ra từng bài một hộ tớ
Bài 16:
1/36; 36/1; 4/9; 9/4
Bài 17:
a: a/b=3/4=45/60
b: a/b=3/5=90/150
Rút gọn biểu thức P = a n + b n 2 - 4 1 n a b n với a, b là các số dương
A. P = a n - 2 b n
B. P = a n - b n
C. P = a n - b n
D. P = a n - b n
Rút gọn biểu thức P = ( a π + b π ) - ( 4 1 π a b ) π với a, b là các số dương.
A.
B.
C.
D.
Đáp án D
Sử dụng hằng đẳng thức với lưu ý
Cho a,b dương. Rút gọn A=\(\frac{a+9b+2\sqrt{ab}}{\sqrt{a}+3\sqrt{b}-2\sqrt{\sqrt{ab}}}-2\sqrt{b}\)
cho các số nguyên dương a , b , c thỏa mãn a/b=2b/c=4c/a . Rút gọn phân số sau T=ab+bc+ca/a^2+b^2+c^2
Cho hai số thực dương a và b. Rút gọn biểu thức A = a 1 3 b + b 1 3 a a 6 + b 6 .
A. A = a b 6
B. A = a b 3
C. A = 1 a b 3
D. A = 1 a b 6
Đáp án B.
Ta có A = a 1 3 b + b 1 3 a a 6 + b 6 = a 1 3 b 1 3 b 6 + a 6 a 6 + b 6 = a 1 3 b 1 3 = a b 3 .
Cho hai số thực dương a và b. Rút gọn biểu thức A = a 1 3 b + b 1 3 a a 6 + b 6
A. A = a b 6
B. A = a b 3
C. A = 1 a b 3
D. A = 1 a b 6