Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Truyen Vu Cong Thanh
Xem chi tiết
Thinh
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
Xem chi tiết
Akai Haruma
13 tháng 4 2021 lúc 14:27

Lời giải:

Bạn nhớ tới bổ đề sau: Với $a,b>0$ thì $a^3+b^3\geq ab(a+b)$.

Áp dụng vào bài:

$5a^3-b^3\leq 5a^3-[ab(a+b)-a^3]=6a^3-ab(a+b)$

$\Rightarrow \frac{5a^3-b^3}{ab+3a^2}\leq \frac{6a^3-ab(a+b)}{ab+3a^2}=\frac{6a^2-ab-b^2}{3a+b}=\frac{(3a+b)(2a-b)}{3a+b}=2a-b$

Tương tự:

$\frac{5b^3-c^3}{bc+3b^2}\leq 2b-c; \frac{5c^3-a^3}{ca+3c^2}\leq 2c-a$

Cộng theo vế:

$\Rightarrow \text{VT}\leq a+b+c=3$

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c=1$

phan tuấn anh
Xem chi tiết
Lê Hào 7A4
Xem chi tiết
Gô đầu moi
28 tháng 12 2021 lúc 16:23

Bạn à tôi chịu

 

Lê Hào 7A4
28 tháng 12 2021 lúc 16:28

hihithì nó khó thiệt mà

Nguyễn Hoàng Minh
28 tháng 12 2021 lúc 20:57

Sửa: CMR: \(\left(\dfrac{2019b+2020c-2021d}{2019c+2020d-2021e}\right)^3=\dfrac{a^2}{bc}\)

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}=\dfrac{2019b+2020c-2021d}{2019c+2020d-2021e}\\ \Rightarrow\left(\dfrac{a}{b}\right)^3=\left(\dfrac{2019b+2020c-2021d}{2019c+2020d-2021e}\right)^3\left(1\right)\\ \dfrac{a}{b}=\dfrac{b}{c}=k\Rightarrow a=bk;b=ck\Rightarrow a=ck^2\\ \Rightarrow\dfrac{a^2}{bc}=\dfrac{c^2k^4}{ck\cdot c}=k^3=\left(\dfrac{a}{b}\right)^3\left(2\right)\\ \left(1\right)\left(2\right)\RightarrowĐpcm\)

Lê Tài Bảo Châu
Xem chi tiết
Đặng Ngọc Quỳnh
23 tháng 5 2021 lúc 18:52

Ta có:

sigma \(\frac{ab}{3a+4b+5c}=\) sigma \(\frac{2ab}{5\left(a+b+2c\right)+\left(a+3b\right)}\le\frac{2}{36}\left(sigma\frac{5ab}{a+b+2c}+sigma\frac{ab}{a+3b}\right)\)

Ta đi chứng minh: \(sigma\frac{ab}{a+b+2c}\le\frac{9}{4}\)

có: \(sigma\frac{ab}{a+b+2c}\le\frac{1}{4}\left(sigma\frac{ab}{c+a}+sigma\frac{ab}{b+c}\right)=\frac{1}{4}\left(a+b+c\right)=\frac{9}{4}\)

BĐT trên đúng nếu: \(sigma\frac{ab}{a+3b}\le\frac{9}{4}\)

Ta thấy: \(sigma\frac{ab}{a+3b}\le\frac{1}{16}\left(sigma\frac{ab}{a}+sigma\frac{3ab}{b}\right)=\frac{1}{16}\)( sigma \(b+sigma3a\)\(=\frac{1}{4}\left(a+b+c\right)=\frac{9}{4}\)

\(\Leftrightarrow sigma\frac{ab}{3a+4b+5c}\le\frac{1}{18}\left(5.\frac{9}{4}+\frac{9}{4}\right)=\frac{3}{4}\)(1)

MÀ: \(\frac{1}{\sqrt{ab\left(a+2c\right)\left(b+2c\right)}}=\frac{2}{2\sqrt{\left(ab+2bc\right)\left(ab+2ca\right)}}\ge\frac{2}{2\left(ab+bc+ca\right)}\)

\(=\frac{3}{3\left(ab+bc+ca\right)}\ge\frac{3}{\left(a+b+c\right)^2}=\frac{3}{9^2}=\frac{1}{27}\)(2)

Từ (1) và (2) \(\Rightarrow T\le\frac{3}{4}-\frac{1}{27}=\frac{77}{108}\)

Vậy GTLN của biểu thức T là 77/108 <=> a=b=c=3

Khách vãng lai đã xóa
Nguyễn Cát Phượng
Xem chi tiết
Nguyễn Hoàng Minh
19 tháng 12 2021 lúc 22:39

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}=\dfrac{2019b+2020c-2021d}{2019c+2020d-2021e}\left(1\right)\\ \text{Đặt }\dfrac{a}{b}=\dfrac{b}{c}=k\Leftrightarrow a=bk;b=ck\Leftrightarrow a=ck^2\\ \Leftrightarrow\dfrac{a^2}{bc}=\dfrac{c^2k^4}{c^2k}=k^3=\left(\dfrac{a}{b}\right)^3\left(2\right)\\ \left(1\right)\left(2\right)\Leftrightarrow\left(\dfrac{2019b+2020c-2021d}{2019c+2020d-2021e}\right)^3=\dfrac{a^2}{bc}\)

Đỗ Ánh
Xem chi tiết
 Mashiro Shiina
7 tháng 3 2020 lúc 13:16

Violympic toán 9

Khách vãng lai đã xóa
40 Nguyễn Anh Tuấn
Xem chi tiết
Tùng Phan Thanh
1 tháng 2 2023 lúc 22:17