Cho a,b,c là các số thực dương thoả mãn : a/b=b/c=c/a
Tính S= (4a-5b+2019c)/(5a-5b+2020c)
Cho a, b, c là các số thực dương thỏa mãn (4a + 5b)(4b + 5c)(4c + 5a) = 729
Tìm GTLN của \(abc\cdot\left(a^2+bc+ca\right)\left(b^2+ca+ab\right)\left(c^2+ab+bc\right)\)
Cho các số a,b,c,d khác 0 thoả mãn \(\dfrac{a}{5b}=\dfrac{b}{5c}=\dfrac{c}{5d}=\dfrac{d}{5a}\)và a+b+c+d=\(\)0
Cho a,b,c là các số thực dương thỏa mãn a+b+c=3. Chứng minh rằng :
\(\dfrac{5a^3-b^3}{ab+3a^2}+\dfrac{5b^3-c^3}{bc+3b^2}+\dfrac{5c^3-a^3}{ca+3c^2}\le3\)
Lời giải:
Bạn nhớ tới bổ đề sau: Với $a,b>0$ thì $a^3+b^3\geq ab(a+b)$.
Áp dụng vào bài:
$5a^3-b^3\leq 5a^3-[ab(a+b)-a^3]=6a^3-ab(a+b)$
$\Rightarrow \frac{5a^3-b^3}{ab+3a^2}\leq \frac{6a^3-ab(a+b)}{ab+3a^2}=\frac{6a^2-ab-b^2}{3a+b}=\frac{(3a+b)(2a-b)}{3a+b}=2a-b$
Tương tự:
$\frac{5b^3-c^3}{bc+3b^2}\leq 2b-c; \frac{5c^3-a^3}{ca+3c^2}\leq 2c-a$
Cộng theo vế:
$\Rightarrow \text{VT}\leq a+b+c=3$
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=1$
cho a,b,c là các số thực dương thỏa mãn (4a+5b)(4b+5c)(4c+5a)=729
tìm GTLN của M=\(abc\left(a^2+bc+ca\right)\left(b^2+ca+ab\right)\left(c^2+ab+bc\right)\)
có ai ko giúp mk với
Cho các số thực a,b,c,d,e thỏa mãn \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}\)chứng minh rằng: \(\left(\dfrac{2019b+2020c-2021d}{2019c+2020d-2021e}\right)=\dfrac{a^2}{b.c}\)
Sửa: CMR: \(\left(\dfrac{2019b+2020c-2021d}{2019c+2020d-2021e}\right)^3=\dfrac{a^2}{bc}\)
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}=\dfrac{2019b+2020c-2021d}{2019c+2020d-2021e}\\ \Rightarrow\left(\dfrac{a}{b}\right)^3=\left(\dfrac{2019b+2020c-2021d}{2019c+2020d-2021e}\right)^3\left(1\right)\\ \dfrac{a}{b}=\dfrac{b}{c}=k\Rightarrow a=bk;b=ck\Rightarrow a=ck^2\\ \Rightarrow\dfrac{a^2}{bc}=\dfrac{c^2k^4}{ck\cdot c}=k^3=\left(\dfrac{a}{b}\right)^3\left(2\right)\\ \left(1\right)\left(2\right)\RightarrowĐpcm\)
Cho các số thực dương a,b,c thỏa mãn điều kiện a+b+c=9. Tìm giá trji lớn nhất của biểu thức
\(T=\frac{ab}{3a+4b+5c}+\frac{bc}{3b+4c+5a}+\frac{ca}{3c+4a+5b}-\frac{1}{\sqrt{ab\left(a+2c\right)\left(b+2c\right)}}\)
Ta có:
sigma \(\frac{ab}{3a+4b+5c}=\) sigma \(\frac{2ab}{5\left(a+b+2c\right)+\left(a+3b\right)}\le\frac{2}{36}\left(sigma\frac{5ab}{a+b+2c}+sigma\frac{ab}{a+3b}\right)\)
Ta đi chứng minh: \(sigma\frac{ab}{a+b+2c}\le\frac{9}{4}\)
có: \(sigma\frac{ab}{a+b+2c}\le\frac{1}{4}\left(sigma\frac{ab}{c+a}+sigma\frac{ab}{b+c}\right)=\frac{1}{4}\left(a+b+c\right)=\frac{9}{4}\)
BĐT trên đúng nếu: \(sigma\frac{ab}{a+3b}\le\frac{9}{4}\)
Ta thấy: \(sigma\frac{ab}{a+3b}\le\frac{1}{16}\left(sigma\frac{ab}{a}+sigma\frac{3ab}{b}\right)=\frac{1}{16}\)( sigma \(b+sigma3a\)) \(=\frac{1}{4}\left(a+b+c\right)=\frac{9}{4}\)
\(\Leftrightarrow sigma\frac{ab}{3a+4b+5c}\le\frac{1}{18}\left(5.\frac{9}{4}+\frac{9}{4}\right)=\frac{3}{4}\)(1)
MÀ: \(\frac{1}{\sqrt{ab\left(a+2c\right)\left(b+2c\right)}}=\frac{2}{2\sqrt{\left(ab+2bc\right)\left(ab+2ca\right)}}\ge\frac{2}{2\left(ab+bc+ca\right)}\)
\(=\frac{3}{3\left(ab+bc+ca\right)}\ge\frac{3}{\left(a+b+c\right)^2}=\frac{3}{9^2}=\frac{1}{27}\)(2)
Từ (1) và (2) \(\Rightarrow T\le\frac{3}{4}-\frac{1}{27}=\frac{77}{108}\)
Vậy GTLN của biểu thức T là 77/108 <=> a=b=c=3
Cho các số thực thỏa mãn\(\dfrac{â}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}chứngminh:\left(\dfrac{2019b+2020c-2021d}{2019c+2020d-2021e}\right)^3=\dfrac{a^2}{bc}\)
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}=\dfrac{2019b+2020c-2021d}{2019c+2020d-2021e}\left(1\right)\\ \text{Đặt }\dfrac{a}{b}=\dfrac{b}{c}=k\Leftrightarrow a=bk;b=ck\Leftrightarrow a=ck^2\\ \Leftrightarrow\dfrac{a^2}{bc}=\dfrac{c^2k^4}{c^2k}=k^3=\left(\dfrac{a}{b}\right)^3\left(2\right)\\ \left(1\right)\left(2\right)\Leftrightarrow\left(\dfrac{2019b+2020c-2021d}{2019c+2020d-2021e}\right)^3=\dfrac{a^2}{bc}\)
Cho các số thực dương a b TM 4a^2+4b^+17ab+5a+5b>=1 tìm min 17a^2+17b^2+16ab
Cho a b c là các số thực dương cmr a^2/5a^2+(b+c)^2+b^2/ 5b^2+(c+a)^2+c^2/5c^2+(a+b)^2 < hoặc = 1/3