Tìm x biết \(a\ge3;b\ge2\)
a)\(\sqrt{x^2-4x+4}=3\)
b)\(\sqrt{x^2-12}=2\)
c)\(\sqrt{x+3}=x+3\)
d)\(\sqrt{x^{ }-2x+1}=x-1\)
g)\(\sqrt{x^2-4-x^2+4}=0\)
h)\(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)
Tìm x:
|2x-1|-|x-3|\(\ge3\) \(\ge3\)
tìm \(x\inℤ\),biết :
a)\(|x-11|+x-11=0\)
b)\(|x-11|+11-x=0\)
c0\(4x+5-|x+3|=11\left(x\ge3\right)\)
\(a,\left|x-11\right|+x-11=0\)
\(\Rightarrow\left|x-11\right|=11-x\)
\(\Rightarrow\orbr{\begin{cases}x-11=11-x\\x-11=x-11\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=11\\x...\left(dbl>:\right)\end{cases}}\)
cho \(x\ge1,y\ge2,z\ge3\)
tìm GTLN của \(A=\dfrac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)
\(=>A=\dfrac{\sqrt{x-1}}{x}+\dfrac{\sqrt{y-2}}{y}+\dfrac{\sqrt{z-3}}{z}\)
áp dụng BĐT AM-GM
\(=>\sqrt{x-1}\le\dfrac{x-1+1}{2}=\dfrac{x}{2}\)
\(=>\dfrac{\sqrt{x-1}}{x}\le\dfrac{\dfrac{x}{2}}{x}=\dfrac{1}{2}\left(1\right)\)
có \(\dfrac{\sqrt{y-2}}{y}=\dfrac{\sqrt{\left(y-2\right)2}}{\sqrt{2}.y}\)
\(=>\sqrt{\left(y-2\right)2}\le\dfrac{y-2+2}{2}=\dfrac{y}{2}\)
\(=>\dfrac{\sqrt{\left(y-2\right)2}}{\sqrt{2}.y}\le\dfrac{\dfrac{y}{2}}{\sqrt{2}.y}=\dfrac{1}{2\sqrt{2}}\left(2\right)\)
tương tự \(=>\dfrac{\sqrt{z-3}}{z}\le\dfrac{1}{2\sqrt{3}}\left(3\right)\)
(1)(2)(3)\(=>A\le\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}\)
Cho \(x\ge3\), Tìm GTLN:
\(A=2019+x-\sqrt{x-3}-2\sqrt{x}\)
Đặt \(\sqrt{x-3}=t\left(t\ge0\right)\Rightarrow x=t^2+3\)
\(A=2019+t^2+3-t-2\sqrt{t^2+3}\)
\(\ge2019+3-2\sqrt{3}\) (do \(t\ge0\))
Dấu "=" xảy ra \(\Leftrightarrow t=0\Leftrightarrow x=3\)
Vậy \(A_{min}=2019+3-2\sqrt{3}\Leftrightarrow x=3\)
Cách kia sai mất rồi:( Nếu sửa đề thành tìm min thì làm thế này:
Ta có: \(A=\frac{1}{2}\left(\sqrt{x-3}-1\right)^2+\frac{1}{2}\left(\sqrt{x}-2\right)^2+2018\ge2018\)
Hoặc: \(A=\frac{1}{2}\left(x-4\right)^2\left[\frac{1}{\left(\sqrt{x-3}+1\right)^2}+\frac{1}{\left(\sqrt{x}+2\right)^2}\right]+2018\ge2018\)
Đẳng thức xảy ra khi x = 4
Tìm giá trị nhỏ nhất của P , biết \(P=x-2\sqrt{x-3}+2\)( với \(x\ge3\) )
Bài này thì không cần đến cao thủ nhỉ :D?
Ta có \(P=x-3-2\sqrt{x-3}+1+4=\left(\sqrt{x-3}-1\right)^2+4\ge4.\) Dấu bằng xảy ra khi và chỉ \(\sqrt{x-3}=1\to x=4.\) Vậy giá trị bé nhất của P là 4, khi x=4.
Cho các số thực dương x,y,z thỏa mãn \(x+y+z\ge3\).
Tìm giá trị nhỏ nhất của biểu thức \(A=x^3+y^3+z^3\).
Lời giải:
Áp dụng BĐT Cô-si:
$x^3+1+1\geq 3x$
$y^3+1+1\geq 3y$
$z^3+1+1\geq 3z$
$\Rightarrow x^3+y^3+z^3+6\geq 3(x+y+z)\geq 3.3=9$
$\Rightarrow A=x^3+y^3+z^3\geq 3$
Vậy $A_{\min}=3$. Giá trị này đạt tại $x=y=z=1$
Cho các số thực dương x,y,z thỏa mãn \(x+y+z\ge3\).
Tìm giá trị nhỏ nhất của biểu thức \(A=x^3+y^3+z^3\).
\(A=\left(x^3+1+1\right)+\left(y^3+1+1\right)+\left(z^3+1+1\right)-6\)
\(A\ge3\sqrt[3]{x^3}+3\sqrt[3]{y^3}+3\sqrt[3]{z^3}-6=3\left(x+y+z\right)-6\ge3.3-6=3\)
\(A_{min}=3\) khi \(x=y=z=1\)
Mọi người giúp em bài này với ạ
Chúng minh rằng nếu \(\left|x\right|\ge3,\left|y\right|\ge3,\left|z\right|\ge3\) thì \(A=\dfrac{xy+yz+zx}{xyz}\le1\)
Tìm GTLN
\(A=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-2}}{y}+\frac{\sqrt{z-3}}{z}v\text{ới}x\ge1;y\ge2;z\ge3\)
\(A=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-2}}{y}+\frac{\sqrt{z-3}}{z}\)
Áp dụng BĐT AM-GM ta có:
\(A\le\frac{1+x-1}{x}+\frac{2+y-2}{2y}+\frac{3+z-3}{3z}=1+\frac{1}{2}+\frac{1}{3}=\frac{11}{6}\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}=1\\\sqrt{y-2}=2\\\sqrt{z-3}=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x-1=1\\y-2=2\\z-3=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=4\\z=6\end{cases}}\)
Vậy \(A_{max}=\frac{11}{6}\Leftrightarrow\hept{\begin{cases}x=2\\y=4\\z=6\end{cases}}\)
Xin lỗi bạn. Bài đó mk lm sai rồi.
Sửa:
Áp dụng BĐT AM-GM ta có:
\(A=\frac{1.\sqrt{x-1}}{x}+\frac{\sqrt{2}.\sqrt{y-2}}{\sqrt{2}.y}+\frac{\sqrt{3}.\sqrt{z-3}}{\sqrt{3}.z}\le\frac{\frac{1+x-1}{2}}{x}+\frac{\frac{2+y-2}{2}}{\sqrt{2}.y}+\frac{\frac{3+z-3}{2}}{\sqrt{3}.z}=\frac{1}{2}+\frac{1}{2.\sqrt{2}}+\frac{1}{2.\sqrt{3}}\)\(=\frac{\sqrt{6}+\sqrt{3}+\sqrt{2}}{2.\sqrt{6}}\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}=1\\\sqrt{y-2}=\sqrt{2}\\\sqrt{z-3}=\sqrt{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}x-1=1\\y-2=2\\z-3=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=4\\z=6\end{cases}}\)
Vậy \(A_{max}=\frac{\sqrt{6}+\sqrt{2}+\sqrt{3}}{2.\sqrt{6}}\)\(\Leftrightarrow\hept{\begin{cases}x=2\\y=4\\z=6\end{cases}}\)
Cho \(x\le1;x+y\ge3\).
Tìm giá trị nhỏ nhất của \(A=3x^2+y^2+3xy\)