\(CMR\)nếu \(\left|x\right|\ge3;\left|y\right|\ge3\left|z\right|\ge3\)Thì \(H=\frac{xy+z+xz}{xyz}\le1\)
Đố
Cho \(x+y+z=1\)
\(S=\dfrac{\left(xy+z\right)\left(yz+x\right)\left(zx+y\right)}{\left(1-x\right)^2\left(1-y\right)^2\left(1-z\right)^2}\)
c/m với mọi x thuộc R: \(\left(\frac{12}{5}\right)^2+\left(\frac{15}{4}\right)^x+\left(\frac{20}{3}\right)^x\ge3^x+4^x+5^x\)
cho các số nguyên dương x,y,z thỏa mãn \(xyz=1\)chứng minh rằng
\(\frac{\sqrt{1+x^3+y^3}}{xy}+\frac{\sqrt{1+y^3+z^3}}{yz}+\frac{\sqrt{1+z^3+x^3}}{zx}\ge3\sqrt{3}\)
cho các số nguyên dương x,y,z thỏa mãn \(xyz=1\)chứng minh rằng
\(\frac{\sqrt{1+x^3+y^3}}{xy}+\frac{\sqrt{1+y^3+z^3}}{yz}+\frac{\sqrt{1+z^3+x^3}}{zx}\ge3\sqrt{3}\)
Chứng minh rằng:\(a+b\ge2\sqrt{ab}\left(1\right),a+b+c\ge3\sqrt[3]{abc}\left(2\right)\)với a,b,c \(\ge0\)
Bài tập: Mọi người giúp mình đi, mình cảm ơn nhiều lắm nhé. Mai mình cần nộp rồi (giải chi tiết giúp mình nghe)
a) Cho a,b,x,y khác 0 thoả mãn x = a - y và y = \(\frac{xb}{x-b}\)( x khác b)
CMR 4 số a,b,x,y lập thành một tỉ lệ thức
b) Cho x,y,z thuộc Q thoả mãn xy + yz + zx = 1
CMR: Số A = \(\sqrt{\left(x^2+1\right)\left(y^2+1\right)\left(z^2+1\right)}\)là một số hữu tỉ
a) Cho x, y, z và x - y - z = 0
Tính giá trị của biểu thức:
\(A=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)
b) Cho x, y, z thỏa mãn: xyz = 1
CMR:
\(\frac{1}{xy+x+1}+\frac{1}{yz+y+1}+\frac{1}{xyz+yz+1}=1\)