Tìm x 33x:11x-1=80
812x.27x=911
tìm giá trị lớn nhất :
7-11x-x^2
7x-5x^2+8
8x-7x^2+15
a, A=-x^2 -11x+7 =-(x^2 +11x -7) = -(x^2 +11x +121/4) +149/4 >= 149/4
A(max)=149/4 tại x=-11/2
b: Ta có: \(-5x^2+7x+8\)
\(=-5\left(x^2-\dfrac{7}{5}x-\dfrac{8}{5}\right)\)
\(=-5\left(x^2-2\cdot x\cdot\dfrac{7}{10}+\dfrac{49}{100}-\dfrac{209}{100}\right)\)
\(=-5\left(x-\dfrac{7}{10}\right)^2+\dfrac{209}{20}\le\dfrac{209}{20}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{7}{10}\)
a: Ta có: \(-x^2-11x+7\)
\(=-\left(x^2+11x-7\right)\)
\(=-\left(x^2+2\cdot x\cdot\dfrac{11}{2}+\dfrac{121}{4}-\dfrac{149}{4}\right)\)
\(=-\left(x+\dfrac{11}{2}\right)^2+\dfrac{149}{4}\le\dfrac{149}{4}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{11}{2}\)
c: Ta có: \(-7x^2+8x+15\)
\(=-7\left(x^2-\dfrac{8}{7}x-\dfrac{15}{7}\right)\)
\(=-7\left(x^2-2\cdot x\cdot\dfrac{4}{7}+\dfrac{16}{49}-\dfrac{121}{49}\right)\)
\(=-7\left(x-\dfrac{4}{7}\right)^2+\dfrac{121}{7}\le\dfrac{121}{7}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{4}{7}\)
Tìm giá trị của biểu thức biết : B=27x^3+28x^2+11x+2(với x=1/2)
HELPP MEEEE :((((
bạn lớp 8 đó hả có chơi ff ko
trl giúp mình vs ạ :)))))
thay x = 1/2, ta có:
B = 27.(1/2)^3 + 28.(1/2)^2 + 11.1/2 + 2
B = 143/8
[27x(-67)+33x(-27)]:(-30)
$[27\cdot(-67)+33\cdot(-27)]:(-30)$
$=[(-27)\cdot67+33\cdot(-27)]:(-30)$
$=[-27\cdot(67+33)]:(-30)$
$=(-27\cdot100):(-30)$
$=-2700:(-30)$
$=2700:30$
$=90$
A ) \(\frac{11x+1}{86}-\frac{11x-1}{88}+\frac{11x+2}{85}=\frac{11x-2}{89}\)
B ) \(\frac{-3}{x^2-5x+4}+\frac{-3}{x^2-11x+28}+\frac{-3}{x^2-17x+70}=\frac{9}{14}\)
C ) \(x^4+3x^3-7x^2-27x-18=0\)
Giải Phương Trình Sau (Nhớ ghi cách làm nha mình k đúng cho)
Giải Phương Trình Sau (Nhớ ghi cách làm nha mình ĐÁNH DẤU ĐÚNG cho)
phân tích đa thức thành nhân tử
a, 2x^4-5x^3-27x^2 + 25x + 50
b, 3x^4 + 6x^3- 33x^2-24x+48
c, x^4+ 7x^3+14x^2+14x+4
b) 3x4-3x3+9x3-9x2-24x2+24x-48x+48
=3x3(x-1)+9x2(x-1)-24x(x-1)-48(x-1)
=(x-1)(3x3+9x2-24x-48)
=3(x-1)(x3+3x2-8x-16)
a)(6x^2+17x+12):(2x+3) b)(5x^2+13x-6):(5x-2) c)(-8x^2+22x-15):(2x-5) d)(14x^2-33x-5):(2x-5) e)(2x^3+7x^2+15x+6):(2x+1) f)(x^3+4x^2-11x-2):(x-2) g)(12x^3+2x^2+4x+3):(2x+1)
a: \(=\dfrac{6x^2+9x+8x+12}{2x+3}=\dfrac{3x\left(2x+3\right)+4\left(2x+3\right)}{2x+3}\)
=3x+4
b: \(=\dfrac{5x^2-2x+15x-6}{5x-2}\)
\(=\dfrac{x\left(5x-2\right)+3\left(5x-2\right)}{5x-2}=x+3\)
c: \(=\dfrac{-8x^2+20x+2x-5-10}{2x-5}=-4x+1+\dfrac{-10}{2x-5}\)
d: \(=\dfrac{14x^2-35x+2x-5}{2x-5}=\dfrac{7x\left(2x-5\right)+\left(2x-5\right)}{2x-5}\)
=7x+1
e: \(=\dfrac{2x^3+x^2+6x^2+3x+12x+6}{2x+1}\)
\(=\dfrac{x^2\left(2x+1\right)+3x\left(2x+1\right)+6\left(2x+1\right)}{2x+1}=x^2+3x+6\)
f: \(=\dfrac{x^3-2x^2+6x^2-12x+x-2}{x-2}=x^2+6x+1\)
g: \(=\dfrac{12x^3+6x^2-4x^2-2x+6x+3}{2x+1}=6x^2-2x+3\)
Giải phương trình:
a) \(\sqrt{x}+\sqrt{2-x}=\dfrac{3x^2-2x+3}{x^2+1}\)
b) \(x^3-11x^2+36x-18=4\sqrt[4]{27x-54}\)
c) \(16x^4+5=6\sqrt[3]{4x^3+x}\)
d) \(\dfrac{1}{\sqrt{2x-1}}+\dfrac{1}{\sqrt[4]{4x-3}}=\dfrac{2}{x}\)
b, \(đk:x\ge2\)
Xét x=2 thay vào pt thấy không thỏa mãn => x>2 hay 27x-54>0
\(x^3-11x+36x-18=4\sqrt[4]{27x-54}\)
\(\Leftrightarrow27x^3-297x^2+972x-486=4\sqrt[4]{\left(27x-54\right).81.81.81}\le189+27x\) (cosi với 4 số dương, dấu = xảy ra khi x=5)
\(\Leftrightarrow x^3-11x^2+35x-25\le0\)
\(\Leftrightarrow\left(x-1\right)\left(x-5\right)^2\le0\) (*)
Có \(\left\{{}\begin{matrix}x>2\\\left(x-5\right)^2\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-1>0\\\left(x-5\right)^2\ge0\end{matrix}\right.\)\(\Rightarrow\left(x-1\right)\left(x-5\right)^2\ge0\) (2*)
Từ (*) và (2*) ,dấu = xra khi x=5 (thỏa mãn)
Vây pt có nghiệm duy nhất x=5
c,Có \(6\sqrt[3]{4x^3+x}=16x^4+5>0\)
\(\Leftrightarrow4x^3+x>0\)
Có: \(16x^4+5=6\sqrt[3]{4x^3+x}\le2\left(4x^3+x+2\right)\) (theo cosi với 3 số dương,dấu = xảy ra khi \(x=\dfrac{1}{2}\))
\(\Leftrightarrow16x^4-8x^3-2x+1\le0\)
\(\Leftrightarrow\left(2x-1\right)^2\left(4x^2+2x+1\right)\le0\) (*)
(tương tự câu b) Dấu = xảy ra khi \(x=\dfrac{1}{2}\)(thỏa mãn)
Vậy....
d) Đk: \(x\ge\dfrac{3}{4}\)
Áp dụng bđt cosi:
\(\sqrt{2x-1}\le\dfrac{2x-1+1}{2}=x\)
\(\Rightarrow\dfrac{1}{\sqrt{2x-1}}\ge\dfrac{1}{x}\) (*)
\(\sqrt[4]{4x-3}\le\dfrac{4x-3+1+1+1}{4}=x\)
\(\dfrac{\Rightarrow1}{\sqrt[4]{4x-3}}\ge\dfrac{1}{x}\) (2*)
Từ (*) và (2*) \(\Rightarrow\dfrac{1}{\sqrt{2x-1}}+\dfrac{1}{\sqrt[4]{4x-3}}\ge\dfrac{2}{x}\)
Dấu = xảy ra khi x=1 (tm)
`a)\sqrtx+\sqrt{2-x}=(3x^2-2x+3)/(x^2+1)`
`đk:0<=x<=2`
`pt<=>sqrtx-1+\sqrt{2-x}-1=(3x^2-2x+3)/(x^2+1)-2`
`<=>(x-1)/(sqrtx+1)+(1-x)/(sqrt{2-x}+1)=(x^2-2x+1)/(x^2+1)`
`<=>(x-1)/(sqrtx+1)+(1-x)/(sqrt{2-x}+1)=(x-1)^2/(x^2+1)`
`<=>(x-1)((x-1)/(x^2+1)+1/(sqrt{2-x}+1)-1/(sqrtx+1))=0`
`<=>x-1=0<=>x=1`
Vậy `S={1}`
Tìm các giới hạn sau: lim x → - ∞ x + 3 3 x - 1
Bài 1: a) 6x2-11x+3
b) 2x2+3x-27
c) x3+2x-3
d) x3-7x+6
e)x3+5x2+8x+4
f) 27x3-27x2+18x-4
dùng hornơ và bơdu
e, \(x^3+5x^2+8x+4=x^3+x^2+4x^2+4x+4x+4\)
\(=x^2\left(x+1\right)+4x\left(x+1\right)+4\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+4x+4\right)=\left(x+1\right)\left(x+2\right)^2\)
d, \(27x^3-27x^2+18x-4=27x^3-9x^2-18x^2+6x+12x-4\)
\(=9x^2\left(3x-1\right)-6x\left(3x-1\right)+4\left(3x-1\right)\)
\(=\left(3x-1\right)\left(9x^2-6x+4\right)\)
thực hiện các phép tính
a.\(\dfrac{4y^2}{11x^4}:\left(-\dfrac{8y}{33x^2}\right)\)
b.\(\dfrac{x^2-4}{3x+12}.\dfrac{x+4}{2x-4}\)
a) \(\dfrac{4y^2}{11x^4}:\left(-\dfrac{8y}{33x^2}\right)\)
\(=\dfrac{4y^2}{11x^4}.\left(-\dfrac{33x^2}{8y}\right)\)
\(=-\dfrac{4y^2.33x^2}{11x^4.8y}\)
\(=-\dfrac{3y}{2x^2}\)
b) \(\dfrac{x^2-4}{3x+12}.\dfrac{x+4}{2x-4}\)
\(=\dfrac{\left(x-2\right)\left(x+2\right)}{3\left(x+4\right)}.\dfrac{x+4}{2\left(x-2\right)}\)
\(=\dfrac{\left(x-2\right)\left(x+2\right)\left(x+4\right)}{3\left(x+4\right).2\left(x-2\right)}\)
\(=\dfrac{x+2}{6}\).
\(\dfrac{\left(x-2\right)\left(x+2\right)\left(x+4\right)}{3\left(x+4\right).2\left(x-2\right)}=\dfrac{x+2}{6}\)