Cho \(x^2+y^2=1\). CMR \(S=2\left(x^6+y^6\right)-3\left(x^4+y^4\right)\) không phụ thuộc vào biến.
C/minh biểu thức sau không phụ thuộc vào biến:
\(\left(x-y-1\right)^3-\left(x-y+1\right)^3+6\left(x-y\right)^2\)
\(\left(x-y-1\right)^3-\left(x-y+1\right)^3+6\left(x-y\right)^2\)
\(=\left(x-y\right)^3-1-3\left(x-y\right).1\left(x-y-1\right)-\left[\left(x-y\right)^3+1+3\left(x-y\right).1\left(x-y+1\right)\right]+6\left(x-y\right)^2\)
\(=-2-3\left(x-y\right)\left(x-y-1\right)-3\left(x-y\right)\left(x-y+1\right)+6\left(x-y\right)^2\)
\(=-2-3\left(x-y\right)\left(x-y-1+x-y+1\right)+6\left(x-y\right)^2\)
\(=-2-3\left(x-y\right).2\left(x-y\right)+6\left(x-y\right)^2\)
\(=-2-6\left(x-y\right)^2+6\left(x-y\right)^2=-2\)
Vậy biểu thức trên ko phụ thuộc vào biến. Chúc bạn học tốt.
Cho x2 + y2 = 1. Chứng minh biểu thức sau không phụ thuộc vào biến x, y: \(2\left(x^6+y^6\right)-3\left(x^4+y^4\right)\)
Ta có: \(2\left(x^6+y^6\right)-3\left(x^4+y^4\right)=2\left[\left(x^2\right)^3+\left(y^2\right)^3\right]-3\left(x^4+y^4\right)\)
\(=2\left(x^2+y^2\right)\left(x^4+x^2y^2+y^4\right)-3x^4-3y^4\)
\(=2x^4-2x^2y^2+2y^4-3x^4-3y^4\)
\(=-x^4-2x^2y^2-y^4\)
\(=-\left(x^4+2x^2y^2+y^4\right)\)
\(=-\left(x^2+y^2\right)^2\)
\(=-1\)
Vậy biểu thức trên không phụ thuộc vào biến.
Cho: \(A=\frac{\left(x^2+y\right)\left(\frac{1}{4}+y\right)+x^2y^2+\frac{3}{4}\left(\frac{1}{3}+y\right)}{x^2y^2+1+\left(x^2-y\right)\left(1-y\right)}\)
a, Tìm tập xác định của A
b, Cmr giá trị của A không phụ thuộc vào x
c, Tìm Min A và giá trị tương ứng của y
Cho biểu thức \(A=\dfrac{\left(x^2+y\right)\left(y+\dfrac{1}{4}\right)+x^2y^2+\dfrac{3}{4}\left(y+\dfrac{1}{3}\right)}{x^2y^2+1+\left(x^2-y\right)\left(1-y\right)}\)
a) CMR: Biểu thức A không phụ thuộc vào biến \(x\) ?
b) Tìm Min A ?
a: \(B=\left(x^2+y\right)\left(y+\dfrac{1}{4}\right)+x^2y^2+\dfrac{3}{4}\left(y+\dfrac{1}{3}\right)\)
\(=x^2y+\dfrac{1}{4}x^2+y^2+\dfrac{1}{4}y+x^2y^2+\dfrac{3}{4}y+\dfrac{1}{4}\)
\(=x^2y+x^2y^2+y^2+y+\dfrac{1}{4}x^2+\dfrac{1}{4}\)
\(=y\left(x^2+1\right)+y^2\left(x^2+1\right)+\dfrac{1}{4}\left(x^2+1\right)\)
\(=\left(x^2+1\right)\left(y+\dfrac{1}{2}\right)^2\)
\(C=x^2y^2+1+\left(x^2-y\right)\left(1-y\right)\)
\(=x^2y^2+1+x^2-x^2y-y+y^2\)
\(=x^2y^2-y+x^2+y^2-x^2y+1\)
\(=y^2\left(x^2+1\right)-y\left(x^2+1\right)+x^2+1\)
\(=\left(x^2+1\right)\left(y^2-y+1\right)\)
=>\(A=\dfrac{y^2+y+\dfrac{1}{4}}{y^2-y+1}\)
b: \(=\dfrac{y^2-y+1+2y-\dfrac{3}{4}}{y^2-y+1}=1+\dfrac{2y-\dfrac{3}{4}}{y^2-y+1}>=1\)
Dấu = xảy ra khi y=3/8
CMR giá trị của đa thức sau ko phụ thuộc vào biến
\(4\left(x-6\right)-x^2\left(2+3x\right)+x\left(5x-1\right)+3x^2\left(x-1\right)\)
khó ghê
giúp tớ nhé
tớ bị trừ 590 điểm
cảm ơn trước
Cho x;y khác 0.CMR:
\(P=\frac{\left|xy\right|}{xy}+\frac{\left|x-y\right|}{x-y}\left(\frac{\left|x\right|}{x}-\frac{\left|y\right|}{y}\right)\) Không phụ thuộc vào biến
Ta có:
P=|xy|/xy+|x-y|/x-y(|x|/x-|y|/y) (1)
Do x,y=/=0 và x,y>0 thì từ (1),ta có:
P=xy/xy+x-y/x-y(xy-xy/xy)
=>P=1+1.0(vì xy-xy=0)
=>P=1 Không phụ thuộc vào biến (đpcm)
x;y khác 0 không chỉ x;y dương đâu bạn ạ. x;y có thể âm nữa
Câu tiếp theo : CMR các biểu thức sau không phụ thuộc vào biến số :
b) \(\frac{x}{x-y}-\frac{x^3-xy^2}{x^2+y^2}.\left(\frac{x}{\left(x-y\right)^2}-\frac{y}{x^2-y^2}\right)\)
chứng tỏ biểu thức sau không phụ thuộc vào biến x,y
B= \(\left(2x-y\right)^3-2\left(4x^3+1\right)+6xy+y^3\)
Ta có: \(B=\left(2x-y\right)^3-2\left(4x^3+1\right)+6xy+y^3\)
\(=8x^3-12x^2y+6xy-y^3-8x^3-2+6xy+y^3\)
\(=12xy-2\)
1.Chứng minh biểu thức sau không phụ thuộc vào biến x , y :
a ) \(3x\left(x-2\right)+x\left(6-3x\right)+5\)
b ) \(2xy\left(x-y\right)+xy\left(2y-x\right)-x^2y\)
a\(=3x^2-6x+6x-3x^2+5=5\)=>ko phụ thuộc vào biến x
b,\(=2x^2y-2xy^2+2xy^2-x^2y-x^2y=0\)=>ko phụ thuộc vào biến ,x,y
a, 3x2- 6x + 6x - 3x2+5=5
Vậy biểu thức không phụ thuộc vào biến x
b, 2x2y-2xy2+2xy2-x2y-x2y=0
Vậy biểu thức không phụ thuộc vào biến y