Bài 3: Những hằng đẳng thức đáng nhớ

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Mathematics

Cho x2 + y2 = 1. Chứng minh biểu thức sau không phụ thuộc vào biến x, y: \(2\left(x^6+y^6\right)-3\left(x^4+y^4\right)\)

Quỳnh Như
22 tháng 7 2017 lúc 22:10

Ta có: \(2\left(x^6+y^6\right)-3\left(x^4+y^4\right)=2\left[\left(x^2\right)^3+\left(y^2\right)^3\right]-3\left(x^4+y^4\right)\)

\(=2\left(x^2+y^2\right)\left(x^4+x^2y^2+y^4\right)-3x^4-3y^4\)

\(=2x^4-2x^2y^2+2y^4-3x^4-3y^4\)

\(=-x^4-2x^2y^2-y^4\)

\(=-\left(x^4+2x^2y^2+y^4\right)\)

\(=-\left(x^2+y^2\right)^2\)

\(=-1\)

Vậy biểu thức trên không phụ thuộc vào biến.