Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Anh Vũ
Xem chi tiết
Minh Nhân
8 tháng 7 2021 lúc 22:41

\(b.\)

\(=\sqrt{\left(3a\right)^2\cdot\left(b-2\right)^2}\)

\(=\left|3a\right|\cdot\left|b-2\right|\)

Với : \(a=2,b=-\sqrt{3}\)

\(2\cdot3\cdot\left(-\sqrt{3}-2\right)=6\cdot\left(-\sqrt{3}-2\right)\)

Minh Nhân
8 tháng 7 2021 lúc 22:39

\(a.\)

\(=\sqrt{4\cdot\left(3x+1\right)^2}=2\cdot\left|3x+1\right|\)

Với : \(x=-\sqrt{2}\)

\(2\cdot\left|3\cdot-\sqrt{2}+1\right|=2\cdot\left|1-\sqrt{6}\right|\)

 

Nguyễn Lê Phước Thịnh
8 tháng 7 2021 lúc 22:54

a) Ta có:\(\sqrt{4\left(9x^2+6x+1\right)^2}\)

\(=2\left(3x+1\right)^2\)

\(=2\cdot\left(-3\cdot\sqrt{2}+1\right)^2\)

\(=2\left(19-6\sqrt{2}\right)\)

\(=38-12\sqrt{2}\)

b) Ta có: \(\sqrt{9a^2\left(b^2-4b+4\right)}\)

\(=3\left|a\right|\left|b-2\right|\)

\(=3\cdot\left|2\right|\cdot\left|-\sqrt{3}-2\right|\)

\(=6\left(2+\sqrt{3}\right)=12+6\sqrt{3}\)

Nguyễn Đức Tố Trân
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
qwerty
31 tháng 3 2017 lúc 20:49

a) = √4. = 2(1 + 6x+ ).

Tại x = -√2, giá trị của là 2(1 + 6(-√2) + 9(

= 2(1 - 6√2 +9.2)

= 2(19 - 6√2) ≈ 21,03.

b) =

= √9.. = 3.│a│.│b - 2│.

Tại a = -2 và b = -√3, giá trị của biểu thức là 3.│-2│.│-√3 - 2│= 3.2.(√3 + 2) = 6(√3 + 2) ≈ 22,392.

le tran nhat linh
3 tháng 4 2017 lúc 16:47

a) = √4. = 2(1 + 6x+ ).

Tại x = -√2, giá trị của là 2(1 + 6(-√2) + 9(

= 2(1 - 6√2 +9.2)

= 2(19 - 6√2) ≈ 21,03.

b) =

= √9.. = 3.│a│.│b - 2│.

Tại a = -2 và b = -√3, giá trị của biểu thức là 3.│-2│.│-√3 - 2│= 3.2.(√3 + 2) = 6(√3 + 2) ≈ 22,392.

Phan Ngọc Linh
Xem chi tiết
Mysterious Person
15 tháng 6 2017 lúc 7:58

a) \(\sqrt{4\left(1+6x+9x^2\right)^2}\) = \(\sqrt{\left(2\left(1+6x+9x^2\right)\right)^2}\)

= \(\sqrt{\left(2\left(1-6\sqrt{2}+18\right)\right)^2}\) = \(2\left(1-6\sqrt{2}+18\right)\) = \(2\left(3\sqrt{2}-1\right)^2\)

= \(21,029\)

b) \(\sqrt{9a^2\left(b^2+4-4b\right)}\) = \(\sqrt{\left(3a\left(b-2\right)\right)^2}\) = \(\sqrt{\left(-6\left(-\sqrt{3}-2\right)\right)^2}\)

= \(\sqrt{\left(6\sqrt{3}+12\right)^2}\) = \(6\sqrt{3}+12\) = \(22,392\)

NT Ánh
Xem chi tiết
Lightning Farron
12 tháng 8 2016 lúc 20:45

a)\(A=\sqrt{2^2\left(1+6x+9x^2\right)^2}=2\left(1+6x+9x^2\right)\)

\(=2\left(3x+1\right)^2\).Tại \(x=-\sqrt{2}\)  ta có:

\(=2\cdot\left(3\cdot-\sqrt{2}+1\right)^2=2\cdot\left(1-3\sqrt{2}\right)^2=2\cdot19-6\sqrt{2}=38-12\sqrt{2}\)

b)\(B=\sqrt{9a^2\left(b^2+4-4b\right)}=\sqrt{3^2a^2\left(b^2-2\cdot2\cdot b+2^2\right)}\)

\(=\sqrt{\left(3a\right)^2\left(b-2\right)^2}\)

\(=3\cdot a\cdot\left(b-2\right)\).Tại \(a=-2;b=-\sqrt{3}\) ta có:

\(B=3\cdot\left(-2\right)\cdot\left(-\sqrt{3}-2\right)=\left(-6\right)\cdot\left(-2-\sqrt{3}\right)=12+6\sqrt{3}\)

 

 

Hoàng Lê Bảo Ngọc
12 tháng 8 2016 lúc 20:41

a) \(\sqrt{4\left(1+6x+9x^2\right)^2}=\sqrt{2^2.\left(3x+1\right)^4}=2.\left(3x+1\right)^2\)

Thay x vào và tính :)

b) \(\sqrt{9a^2\left(b^2-4b+4\right)}=\sqrt{\left(3a\right)^2.\left(b-2\right)^2}=\left|3a\right|.\left|b-2\right|\)

Thay a,b vào và tính :)

Đặng Tuyết Đoan
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 8 2021 lúc 20:47

a) Ta có: \(A=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)

\(=\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\dfrac{-3}{\sqrt{x}+3}\)

b) Để \(A< -\dfrac{1}{3}\) thì \(A+\dfrac{1}{3}< 0\)

\(\Leftrightarrow\dfrac{-3}{\sqrt{x}+3}+\dfrac{1}{3}< 0\)

\(\Leftrightarrow\dfrac{-9+\sqrt{x}+3}{3\left(\sqrt{x}+3\right)}< 0\)

\(\Leftrightarrow\sqrt{x}-6< 0\)

\(\Leftrightarrow x< 36\)

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 36\\x\ne9\end{matrix}\right.\)

Quang
Xem chi tiết
Bùi Nam ANH
1 tháng 5 2023 lúc 15:44

Ta có :A=\(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\) -\(\dfrac{2\sqrt{x}-2}{\sqrt{x}-1}\) 

=\(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\)-2

=\(\dfrac{-\sqrt{x}}{\sqrt{x}+1}\)

thay vào A=\(\dfrac{-2}{3}\)

b)

A=-1+\(\dfrac{1}{\sqrt{x}+1}\) \(\ge\) -1+\(\dfrac{1}{1}\)=1(vì \(\sqrt{x}\)\(\ge\) 0)

Dấu bằng xẩy ra\(\Leftrightarrow\) x=0

Bùi Nam ANH
1 tháng 5 2023 lúc 15:48

chỗ đó cho thêm x-1 nha

đấu >= thay thành <= rùi nhân thêm x-1>=-1 nữa là lớn nhất bằng 0

123 nhan
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 8 2023 lúc 5:06

a: 


Sửa đề: \(P=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{3x+3}{9-x}\right)\cdot\left(\dfrac{\sqrt{x}-7}{\sqrt{x}+1}+1\right)\)

\(P=\left(\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{x-9}\right)\cdot\dfrac{\sqrt{x}-7+\sqrt{x}+1}{\sqrt{x}+1}\)

\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}\cdot\dfrac{2\sqrt{x}-6}{\sqrt{x}+1}\)

\(=\dfrac{-3\sqrt{x}-3}{\sqrt{x}+3}\cdot\dfrac{2}{\sqrt{x}+1}=\dfrac{-6}{\sqrt{x}+3}\)

b: P>=1/2

=>P-1/2>=0

=>\(\dfrac{-6}{\sqrt{x}+3}-\dfrac{1}{2}>=0\)

=>\(\dfrac{-12-\sqrt{x}-3}{2\left(\sqrt{x}+3\right)}>=0\)

=>\(-\sqrt{x}-15>=0\)

=>\(-\sqrt{x}>=15\)

=>căn x<=-15

=>\(x\in\varnothing\)

c: căn x+3>=3

=>6/căn x+3<=6/3=2

=>P>=-2

Dấu = xảy ra khi x=0

Linh Khánh
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 3 2023 lúc 23:50

a: \(A=\dfrac{2\sqrt{x}+6+\sqrt{x}-3}{x-9}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\dfrac{3\left(\sqrt{x}+1\right)}{x-9}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}=\dfrac{3}{\sqrt{x}+3}\)

b: \(\sqrt{x}+3>=3\)

=>A<=1

Dấu = xảy ra khi x=0

c: \(P=A:\left(B-1\right)=\dfrac{3}{\sqrt{x}+3}:\dfrac{2\sqrt{x}+1-\sqrt{x}-3}{\sqrt{x}+3}=\dfrac{3}{\sqrt{x}-2}\)

Để P nguyên thì căn x-2\(\in\left\{1;-1;3;-3\right\}\)

=>\(x\in\left\{1;25\right\}\)

Yết Thiên
Xem chi tiết
Nguyễn Hoàng Minh
13 tháng 11 2021 lúc 10:44

\(a,P=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\\ P=\dfrac{-3\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\\ P=\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}=\dfrac{-3}{\sqrt{x}+3}\\ b,P=\dfrac{-3}{\sqrt{x}+3}\ge\dfrac{-3}{0+3}=-1\\ P_{min}=-1\Leftrightarrow x=0\)