cho a,b,c là đọ dài 3 cạnh của 1 tam giác chứng minh a2(b+c-a)+b2(a+c-b)+c2(a+b-c)<3abc
cho a,b,c là độ dài 3 cạnh của tam giác , chứng minh :
a3+b3+c3+2abc < a(b2+c2)+b(a2+c2)+c(a2+b2) < a3+b3+c3+3abc
mình cần gấp lắm , mn giúp mình với
Cho a, b, c là độ dài ba cạnh của một tam giác.
a) Chứng minh (b - c)2 < a2
b) Từ đó suy ra: a2 + b2 + c2 < 2(ab + bc + ca)
a) Vì a, b, c là độ dài 3 cạnh của một tam giác
⇒ a + c > b và a + b > c (Bất đẳng thức tam giác)
⇒ a + c – b > 0 và a + b – c > 0
Ta có: (b – c)2 < a2
⇔ a2 – (b – c)2 > 0
⇔ (a – (b – c))(a + (b – c)) > 0
⇔ (a – b + c).(a + b – c) > 0 (Luôn đúng vì a + c – b > 0 và a + b – c > 0).
Vậy ta có (b – c)2 < a2 (1) (đpcm)
b) Chứng minh tương tự phần a) ta có :
( a – b)2 < c2 (2)
(c – a)2 < b2 (3)
Cộng ba bất đẳng thức (1), (2), (3) ta có:
(b – c)2 + (c – a)2 + (a – b)2 < a2 + b2 + c2
⇒ b2 – 2bc + c2 + c2 – 2ca + a2 + a2 – 2ab + b2 < a2 + b2 + c2
⇒ 2(a2 + b2 + c2) – 2(ab + bc + ca) < a2 + b2 + c2
⇒ a2 + b2 + c2 < 2(ab + bc + ca) (đpcm).
Cho a, b. c là độ dài 3 cạnh của một tam giác. Chứng minh rằng: 4b2c2 – (a2 + b2 + c2) > 0
Đề sai với $b=0,1; c=0,2; a=0,25$
Cho a, b,c là độ dài ba cạnh tam giác. Chứng minh rằng: a/(a2 + bc) + 1/(b2+ ac) + s/(c2+ab) <= (a+b+c)/2abc
cho a,b,c là độ dài 3 cạnh tam giác.
a)a2/b2+b2/a2≥ a/b+b/a
b)a2/b+b2/a+c2/a≥ a+b+c
c)a2/(b+c)+b2/(a+c)+c2/(a+b)≥ (a+b+c)/2
a,Chứng minh bđt:
1,(a-1)(a-3)(a-4)(a-6)+9 ≥ 0
2,a2/b+c-a+b2/c+a-b+c2/a+b-c ≥ a+b+c (a,b,c là độ dài 3 cạnh tam giác)
b,Cho a2-4a+1=0.Tính giá trị của biểu thức A=a4+a2+1/a2
c,Cho a,b,c thỏa mãn 1/a+1/b+1/c=1/a+b+c.Tính giá trị của biểu thức M=(a5+b5)(b7+c7)(c2013+a2013)
1: (a-1)(a-3)(a-4)(a-6)+9
=(a^2-7a+6)(a^2-7a+12)+9
=(a^2-7a)^2+18(a^2-7a)+81
=(a^2-7a+9)^2>=0
b: \(A=\dfrac{a^4-4a^3+a^2+4a^3-16a+4+16a-3}{a^2}=\dfrac{16a-3}{a^2}\)
a^2-4a+1=0
=>a=2+căn 3 hoặc a=2-căn 3
=>A=11-4căn 3 hoặc a=11+4căn 3
cho a , b , c là độ dài 3 cạnh của 1 tam giác . cm
a. a2 + b2 + c2 < 2.( ab + bc + ca )
b. a/b+c-a + b/a+c-b + c/a+b-c ≥3
** Lần sau bạn lưu ý viết đề bằng công thức toán (hộp công thức nằm ở nút biểu tượng $\sum$ bên trái khung soạn thảo)
Lời giải:
a) Vì $a,b,c$ là độ dài 3 cạnh tam giác nên theo BĐT tam giác ta có:
$c< a+b\Rightarrow c^2< c(a+b)$
$b< a+c\Rightarrow b^2< b(a+c)$
$a<b+c\Rightarrow a^2< a(b+c)$
$\Rightarrow a^2+b^2+c^2< c(a+b)+b(a+c)+a(b+c)$
hay $a^2+b^2+c^2< 2(ab+bc+ac)$ (đpcm)
b)
Áp dụng BĐT Bunhiacopxky:
$\text{VT}[a(b+c-a)+b(a+c-b)+c(a+b-c)]\geq (a+b+c)^2$
$\text{VT}[2(ab+bc+ac)-(a^2+b^2+c^2)]\geq (a+b+c)^2$
$\Rightarrow \text{VT}\geq \frac{(a+b+c)^2}{2(ab+bc+ac)-(a^2+b^2+c^2)}(*)$
Mà theo BĐT Cô-si:
$a^2+b^2+c^2\geq ab+bc+ac\Rightarrow a^2+b^2+c^2\geq \frac{(a+b+c)^2}{3}$. Do đó:
$2(ab+bc+ac)-(a^2+b^2+c^2)=(a+b+c)^2-2(a^2+b^2+c^2)$
$\leq (a+b+c)^2-2.\frac{(a+b+c)^2}{3}=\frac{(a+b+c)^2}{3}(**)$
Từ $(*); (**)\Rightarrow \text{VT}\geq 3$ (đpcm)
Dấu "=" xảy ra khi $x=y=z$
Lời giải khác của câu b
Đặt $b+c-a=x; a+c-b=y; a+b-c=z$. Theo BĐT tam giác thì $x,y,z>0$
$\Rightarrow c=\frac{x+y}{2}; a=\frac{y+z}{2}; b=\frac{x+z}{2}$
Bài toán trở thành:
Cho $x,y,z>0$. CMR $\frac{y+z}{2x}+\frac{z+x}{2y}+\frac{x+y}{2z}\geq 3$
Thật vậy:
Áp dụng BĐT Cô-si:
\(\frac{y+z}{2x}+\frac{z+x}{2y}+\frac{x+y}{2z}\geq 3\sqrt[3]{\frac{(x+y)(y+z)(x+z)}{8xyz}}\geq 3\sqrt[3]{\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{xz}}{8xyz}}=3\)
Ta có đpcm
Dấu "=" xảy ra khi $x=y=z$ hay $a=b=c$
bạn cx z luôn nha Akai Haruma
cho a,b,c là cạnh của 1 tam giác có chu vi =1.Chứng minh rằng: a2+b2+c2+4abc≤\(\dfrac{1}{2}\)
Tham khảo:
https://hoc24.vn/cau-hoi/cho-a-b-c-la-do-dai-ba-canh-cua-mot-tam-giac-va-thoa-man-he-thuc-a-b-c-1-cmr-a2-b2-c2-12.139261258302
Cho a,b,c là độ dài của 3 cạnh tam giác. Chứng minh rằng ab + bc+ ca < a2 + b2 + c2 mà
a < hoặc = 0
1. cho a, b, c > 0 và a + b + c =< căn3
Tìm min D biết D = căn(a2 + 1/b2) + căn(b2 + 1/c2) + căn(c2 + 1/a2)
2. Cho a, b, c > 0 và abc = 1
Chứng minh a3/[(1+b)(1+c)] + b3/[(1+c)(1+a)] + c3/[(1+a)(1+b)]
3. Cho a, b, c là 3 cạnh của tam giác. Chứng minh ab + bc + ca =< (c + a - b)4/[a(a + b - c)] + (a + b - c)4/[b(b + c - a)] + (b + c - a)4/[c(a + c - b)]
4. Cho x, y, z > 0
chứng minh (xyz)/[(1+3x)(x+8y)(y+9z)(z+6)] =< 1/74