Tìm GTNN của biểu thức
a) A=/x-102/+/2-x/
b) B=/x-102/+/x-2/
Tìm GTNN của biểu thức A = | x-102 | + | 2-x |
Muốn A có GTNN thì |x-102|+|2-x| phải có GTNN
\(\Rightarrow\)A co GTNN =-100 khi x=102
Tim GTNN
a) A=/x-102/+/2-x/
b) B=/x-102/+/x-2/
em gửi bài qua fb thầy chữa cho, tìm fb của thầy bằng sđt nhé: 0975705122
Bài 1: Tìm x biết |x+2| + |2x – 3| = 5
Bài 2: Tìm GTNN của biểu thức A = |x-102| + |2-x|
\(+,x< -2\Rightarrow\left\{{}\begin{matrix}x+2< 0\\2x-3< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left|x+2\right|=-2-x\\\left|2x-3\right|=3-2x\end{matrix}\right.\Rightarrow1-3x=5\Rightarrow x=-\frac{4}{3}\left(\text{loại}\right)\)
\(+,x\ge\frac{3}{2}\Rightarrow\left\{{}\begin{matrix}2x-3\ge0\\x+2>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left|2x-3\right|=2x-3\\\left|x+2\right|=x+2\end{matrix}\right.\Rightarrow3x-1=5\Rightarrow x=2\left(\text{thoa man}\right)\)
\(+,-2\le x< \frac{3}{2}\Rightarrow\left\{{}\begin{matrix}x+2\ge0\\2x-3< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left|x+2\right|=x+2\\\left|2x-3\right|=3-2x\end{matrix}\right.\Rightarrow5-x=0\Rightarrow x=0\left(\text{thoa man}\right)\)
\(2.\text{ Ta co:}\left\{{}\begin{matrix}\left|x-102\right|\ge102-x\\\left|2-x\right|\ge x-2\end{matrix}\right.\Rightarrow A\ge102-x+x-2=100.\Rightarrow A_{min}=100.\text{dâu "=" xay ra}\Leftrightarrow\left\{{}\begin{matrix}102-x\ge0\\x-2\ge0\end{matrix}\right.\Leftrightarrow2\le x\le102\)
Dung mà cx dùng cái này cơ.Tao Bống nè!!!
Tìm GTNN của biểu thức A=giá trị tuyệt đối của x-102 rồi cộng cho giá trị tuyệt đối của 2-x
A=|x-102|+|2-x|\(\ge\)|x-102+2-x|=|-100|=100
vậy minA=100 <=>|x-102|=0 hoặc |2-x|=0
<=>x-102=0 hoặc 2-x=0
<=> x=102 hoặc x=2
Tính giá trị của biếu thức
a) (2000 + 7015) : 3 b) (102 + 901) x 7
c) 2515 : (1 + 4) d) 705 x (8 - 2)
a)
(2000 + 7015) : 3
= 9015 : 3
= 3005
b)
(102 + 901) x 7
= 1003 x 7
= 7021
c)
2515 : (1 + 4)
= 2515 : 5
= 503
d)
705 x (8 - 2)
= 705 x 6
= 4230
Bài 7. Tìm GTNN (hoặc GTLN) của biểu thức
1. A = x² – 2x +1
5. D = -x² - 6x – 10
2. B = x² + 4x – 5
6. E = -x² + 5x +3
3. C = x²+x
7. F = -x² +100x – 2022
4. A= 4x² +4x -1|
1: A=(x-1)^2>=0
Dấu = xảy ra khi x=1
5: B=-(x^2+6x+10)
=-(x^2+6x+9+1)
=-(x+3)^2-1<=-1
Dấu = xảy ra khi x=-3
2: B=x^2+4x+4-9
=(x+2)^2-9>=-9
Dấu = xảy ra khi x=-2
6: =-(x^2-5x-3)
=-(x^2-5x+25/4-37/4)
=-(x-5/2)^2+37/4<=37/4
Dấu = xảy ra khi x=5/2
3: =x^2+x+1/4-1/4
=(x+1/2)^2-1/4>=-1/4
Dấu = xảy ra khi x=-1/2
7: =4x^2+4x+1-2
=(2x+1)^2-2>=-2
Dấu = xảy ra khi x=-1/2
1. Tìm GTLN của B=12-/x+4/
2. Tìm x bt /x+2/+/2x-3/=5
3. Tìm GTNN của biểu thức A=/x-102/+/2-x/
Câu 2;3 mk lm bạn gạt xuôngs
\(\left|x+4\right|\ge0\Rightarrow B=12-\left|x+4\right|\le12-0=12\Rightarrow B_{min}=12.\text{Dâu "=" xay ra khi:}x=-4\)
tìm gtln hoặc gtnn của biểu thức
a) (x+1)(x+2)(x+4)(x+5)
b) -x^2-4x-9y^2-6y-6
xin giải giúp với ạ
a,\(A=\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)=\left(x^2+6x+5\right)\left(x^2+6x+8\right)\)
đặt \(x^2+6x+5=t=>t\left(t+3\right)=t^2+3t=t^2+2.\dfrac{3}{2}t+\dfrac{9}{4}-\dfrac{9}{4}\)
\(=\left(t+\dfrac{3}{2}\right)^2-\dfrac{9}{4}\ge-\dfrac{9}{4}< =>t=\dfrac{-3}{2}\)
\(=>A\)\(=-\dfrac{3}{2}\left(-\dfrac{3}{2}+3\right)=-2,25\)
Vậy Min A\(=-2,25\)
b,\(B=-x^2-4x-9y^2-6y-6\)
\(=-\left(x^2+4x+4\right)-\left(3y\right)^2-2.3y-1-1\)
\(=-\left(x+2\right)^2-\left(3y+1\right)^2-1\le-1\)
dấu"=' xảy ra\(< =>x=-2,y=-\dfrac{1}{3}\)
a.
$(x+1)(x+2)(x+4)(x+5)=(x+1)(x+5)(x+2)(x+4)=(x^2+6x+5)(x^2+6x+8)$
$=a(a+3)$ với $a=x^2+6x+5$
$=a^2+3a=(a^2+3a+\frac{9}{4})-\frac{9}{4}$
$=(a+\frac{3}{2})^2-\frac{9}{4}$
$=(x^2+6x+\frac{13}{2})^2-\frac{9}{4}\geq \frac{-9}{4}$
Vậy gtnn của biểu thức là $\frac{-9}{4}$. Giá trị này đạt tại $x^2+6x+\frac{13}{2}=0$
$\Leftrightarrow x=\frac{-6\pm \sqrt{10}}{2}$
Bài 7. Tìm GTNN (hoặc GTLN) của biểu thức
1. A = x² – 2x +1
5. D = -x² - 6x – 10
2. B = x² + 4x – 5
6. E = -x² + 5x +3
3. C = x²+x
7. F = -x² +100x – 2022
4. A= 4x² +4x -1|
1: A=(x-1)^2>=0
Dấu = xảy ra khi x=1
5: B=-(x^2+6x+10)
=-(x^2+6x+9+1)
=-(x+3)^2-1<=-1
Dấu = xảy ra khi x=-3
2: B=x^2+4x+4-9
=(x+2)^2-9>=-9
Dấu = xảy ra khi x=-2
6: =-(x^2-5x-3)
=-(x^2-5x+25/4-37/4)
=-(x-5/2)^2+37/4<=37/4
Dấu = xảy ra khi x=5/2
3: =x^2+x+1/4-1/4
=(x+1/2)^2-1/4>=-1/4
Dấu = xảy ra khi x=-1/2
7: =4x^2+4x+1-2
=(2x+1)^2-2>=-2
Dấu = xảy ra khi x=-1/2