Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phùng Gia Bảo
Xem chi tiết
Đinh Thị Ngọc Anh
Xem chi tiết
ho quoc khanh
Xem chi tiết
nanako
Xem chi tiết
Hoàng Tử Hà
6 tháng 4 2021 lúc 13:54

a/ \(y=\left(x^3-3x\right)^{\dfrac{3}{2}}\Rightarrow y'=\dfrac{3}{2}\left(x^3-3x\right)^{\dfrac{1}{2}}\left(x^3-3x\right)'=\dfrac{3}{2}\left(3x^2-3\right)\sqrt{x^3-3x}\)

b/ \(y'=5\left(\sqrt{x^3+1}-x^2+2\right)^4\left(\sqrt{x^3+1}-x^2+2\right)'=5\left(\sqrt{x^3+1}-x^2+2\right)^4\left(\dfrac{3x^2}{\sqrt{x^3+1}}-2x\right)\)c/ 

\(y'=14\left(x^6+2x-3\right)^6\left(x^6+2x-3\right)'=14\left(x^6+2x-3\right)^6\left(6x^5+2\right)\)

d/ \(y=\left(x^3-1\right)^{-\dfrac{5}{2}}\Rightarrow y'=-\dfrac{5}{2}\left(x^3-1\right)^{-\dfrac{7}{2}}\left(x^3-1\right)'=-\dfrac{15x^2}{2\sqrt{\left(x^3-1\right)^7}}\)

Nguyễn Huỳnh Minh Trung
Xem chi tiết
Minh Triều
11 tháng 8 2015 lúc 16:24

tính x+y chứ      

Minh Triều
11 tháng 8 2015 lúc 16:39

Đặt \(\left(x+\sqrt{x^2+5}\right)\left(y+\sqrt{y^2+5}\right)=5\)là A

Nhân 2 vế A cho \(\sqrt{x^2+5}-x\)ta được:

\(5.\left(y+\sqrt{y^2+5}\right)=5.\left(\sqrt{x^2+5}-x\right)\)

\(\Leftrightarrow y+\sqrt{y^2+5}=\sqrt{x^2+5}-x\)

\(\Leftrightarrow x+y=\sqrt{x^2+5}-\sqrt{y^2+5}\left(1\right)\)

Nhân 2 vế A cho \(\sqrt{y^2+5}-y\) ta được:

\(5.\left(x+\sqrt{x^2+5}\right)=5.\left(\sqrt{y^2+5}-y\right)\)

\(\Leftrightarrow x+\sqrt{x^2+5}=\sqrt{y^2+5}-y\)

\(\Leftrightarrow x+y=\sqrt{y^2+5}-\sqrt{x^2+5}\left(2\right)\)

từ (1) và (2) suy ra:

\(x+y-\left(x+y\right)=\sqrt{x^2+5}-\sqrt{y^2+5}-\left(\sqrt{y^2+5}-\sqrt{x^2+5}\right)\)

\(\Leftrightarrow2\left(\sqrt{x^2+5}-\sqrt{y^2+5}\right)=0\)

\(\Leftrightarrow\sqrt{x^2+5}-\sqrt{y^2+5}=0\)

\(\Rightarrow x+y=\sqrt{x^2+5}-\sqrt{y^2+5}=0\)

ILoveMath
Xem chi tiết
dinh huong
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 8 2021 lúc 21:41

Đặt \(\left\{{}\begin{matrix}x+2=a\\y-1=b\end{matrix}\right.\)

\(\left(a+\sqrt{a^2+1}\right)\left(b+\sqrt{b^2+1}\right)=1\)

\(\Rightarrow\left\{{}\begin{matrix}b+\sqrt{b^2+1}=\sqrt{a^2+1}-a\\a+\sqrt{a^2+1}=\sqrt{b^2+1}-b\end{matrix}\right.\)

\(\Rightarrow a+b+\sqrt{a^2+1}+\sqrt{b^2+1}=\sqrt{a^2+1}+\sqrt{b^2+1}-a-b\)

\(\Rightarrow a+b=0\)

\(\Rightarrow x+2+y-1=0\)

\(\Rightarrow x+y=-1\)

ILoveMath
26 tháng 8 2021 lúc 21:23

\(\sqrt{x^2+5x+4}\) hay \(\sqrt{x^2+4x+5}\) thế bạn

Akai Haruma
26 tháng 8 2021 lúc 21:42

Lời giải:
ĐKĐB \(\Rightarrow (x+2-\sqrt{x^2+4x+5})(x+2+\sqrt{x^2+4x+5})(y-1+\sqrt{y^2-2y+2})=x+2-\sqrt{x^2+4x+5}\)

\(\Leftrightarrow -(y-1+\sqrt{y^2-2y+2})=x+2-\sqrt{x^2+4x+5}\)

\(\Leftrightarrow \sqrt{x^2+4x+5}-\sqrt{y^2-2y+2}=x+y+1(*)\)

 

ĐKĐB \(\Rightarrow (x+2+\sqrt{x^2+4x+5})(y-1+\sqrt{y^2-2y+2})(y-1-\sqrt{y^2-2y+2})=y-1-\sqrt{y^2-2y+2}\)

\(\Leftrightarrow -(x+2+\sqrt{x^2+4x+5})=y-1-\sqrt{y^2-2y+2}\)

\(\Leftrightarrow \sqrt{y^2-2y+2}-\sqrt{x^2+4x+5}=x+y+1(**)\)

Lấy $(*)+(**)\Rightarrow x+y+1=0$

$\Leftrightarrow x+y=-1$

 

Lizy
Xem chi tiết

ĐKXĐ: \(x\ge-2;y\ge0\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x+2}=a\ge0\\\sqrt{y}=b\ge0\end{matrix}\right.\) pt đầu trở thành:

\(a\left(a^2+1\right)=b\left(ab+1\right)\)

\(\Leftrightarrow a^3+a=ab^2+b\)

\(\Leftrightarrow a^3-ab^2+a-b=0\)

\(\Leftrightarrow a\left(a^2-b^2\right)+a-b=0\)

\(\Leftrightarrow a\left(a-b\right)\left(a+b\right)+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+1\right)=0\)

\(\Leftrightarrow a-b=0\) (do \(a^2+ab+1>0;\forall a\ge0;b\ge0\))

\(\Leftrightarrow\sqrt{x+2}=\sqrt{y}\)

\(\Rightarrow y=x+2\)

Thế vào pt dưới:

\(x^2+\left(x+3\right)\left(x+3\right)=x+16\)

\(\Leftrightarrow2x^2+5x-7=0\Rightarrow\left[{}\begin{matrix}x=1\Rightarrow y=3\\x=-\dfrac{7}{2}< -2\left(loại\right)\end{matrix}\right.\)

Chí Lê Toàn Phùng
Xem chi tiết
Nguyễn Thành Trương
21 tháng 7 2019 lúc 6:24

Ta có: \(\left(x+\sqrt{x^2+5}\right)\left(y+\sqrt{y^2}+5\right)=5\\ \Leftrightarrow\left(x+\sqrt{x^2+5}\right)\left(\sqrt{x^2+5}-x\right)\left(y+\sqrt{y^2+5}\right)=5\left(\sqrt{x^2+5}-x\right)\\ \Leftrightarrow5\left(y+\sqrt{y^2+5}\right)=5\left(\sqrt{x^2+5}-x\right)\\ \Leftrightarrow x+y=\sqrt{x^2+5}-\sqrt{y^2+5}\left(1\right)\)Mặt khác:

\(\left(x+\sqrt{x^2+5}\right)\left(y+\sqrt{y^2+5}\right)=5\\ \Leftrightarrow\left(x+\sqrt{x^2+5}\right)\left(\sqrt{y^2+5}-y\right)\left(y+\sqrt{y^2+5}\right)=5\left(\sqrt{y^2+5}-y\right)\\ \Leftrightarrow5\left(x+\sqrt{x^2+5}\right)=5\left(\sqrt{y^2+5}-y\right)\\ \Leftrightarrow x+y=\sqrt{y^2+5}-\sqrt{x^2+5}\left(2\right)\)Cộng (1) và (2) theo vế ta có: \(x+y=0\)