Xac dinh a,b : x4-3x+x = (x+z)(x3+bx2+ax-2)
Bài 1: Phân tích đa thức thành nhân tử:
a) x2y+xy+x+1
b) x2-(a+b)x+ab
c) ax2+ay-bx2-by
d) ax-2x-a2+2a
e) 2x2+4ax+x+2a
f) x3+ax2+x+a
g) x4+2x3-4x-4
a) x2y+xy+x+1= (x2y+xy)+(x+1)=xy(x+10+(x+1)=(x+1)(xy+1)
b) x2-(a+b)x+ab=x2-ax-bx+ab=(x2-ax)-(bx-ab)=x(x-a)-b(x-a)=(x-a)(x-b)
c) ax2+ay-bx2-by=(ax2+ay)-(bx2+by)=a(x2+y)-b(x2+y)=(a-b)(x2+y)
d) ax-2x-a2+2a=(ax-2x)-(a2-2a)=x(a-2)-a(a-2)=(a-2)(x-a)
e) 2x2+4ax+x+2a=(2x2+4ax)+(x+2a)=2x(x+2a)+(x+2a)=(x+2a)(2x+1)
f) x3+ax2+x+a=(x3+ax2)+(x+a)=x2(x+a)+(x+a)=(x2+1)(x+a)
g: Ta có: \(x^4+2x^3-4x-4\)
\(=\left(x^2-2\right)\left(x^2+2\right)-2x\left(x^2-2\right)\)
\(=\left(x^2-2\right)\cdot\left(x^2+2x+2\right)\)
xac dinh a,b,c biet rang:
2x^2-3x-4=ax^2+bx-(c+1)
ax^3+5x^2-4x+2=4x^3-(b-2)x^2+cx+(d-3)
1.Xac dinh a,b,c
a, x^3+3x^2-x-3=(x-2).(x^2+bx+c)+a
b,4x^3+7x^2+7x-6=(ax+b).(x^2+x+1)+c
giup minh voi nha.
Xac dinh he so a, b sao cho da thuc 6x4 - 7x3 + ax2 +3x +2 chia het cho da thuc x2 - x + b
Đặt phép chia ta tìm được dư cuối cùng là (3+b +a -6b -1) x + 2 - (a -6b -1). b
Để phép chia trên là phép chia hết thì dư cuối cùng là 0
suy ra các hệ số của đa thức dư đều =0, tức là 2 +a -5b = 0 (1) và 2 -(a -6b -1). b = 0 (2)
Từ (1) suy ra a = 5b -2, thay vào (2) và rút gọn ta được b2+3b +2 = 0 suy ra b = -1 hoặc b = -2
Với b = -1 suy ra a = -7; Với b =-2 suy ra a = -12. Bài toán có 2 đáp số
Tìm a sao cho biểu thức A chia hết cho B(tìm a sao cho A:B ∈ Z)
1)A=x3-3x2-ax+3;B=x-1
2)A=3x3-16x2+25x+a;B=x2-4x+3
3)A=x4-x3+6x2-x+a;B=x2-x+5
\(1,A⋮B\Leftrightarrow x^3-3x^2-ax+3=\left(x-1\right)\cdot a\left(x\right)\)
Thay \(x=1\)
\(\Leftrightarrow1-3-a+3=0\\ \Leftrightarrow a=1\)
\(2,A⋮B\Leftrightarrow3x^3-16x^2+25x+a=\left(x^2-4x+3\right)\cdot b\left(x\right)\\ \Leftrightarrow3x^3-16x^2+25x+a=\left(x-3\right)\left(x-1\right)\cdot b\left(x\right)\)
Thay \(x=1\)
\(\Leftrightarrow3-16+25+a=0\\ \Leftrightarrow a=-12\)
Thay \(x=3\)
\(\Leftrightarrow3\cdot27-16\cdot9+25\cdot3+a=0\\ \Leftrightarrow81-144+75+a=0\\ \Leftrightarrow12+a=0\Leftrightarrow a=-12\)
Vậy \(a=-12\)
xac dinh a, b de f(x)=x^4+ax^2+b chia het cho g(x)=x^2+x+1
Xác định số hữu tỉ a, b sao cho:
a) 2x2 + ax - 4 chia hết cho x + 4
b) x4 - 3x3 + 3x2 + ax + b chia hết cho x2 - 3x - 4
c) 3x2 + ax + 27 chia cho x + 5 thì dư 27
d) x3 + ax + b chia cho x + 1 thi dư 7, chia cho x - 3 thì dư 5.
a: \(\Leftrightarrow2x^2+8x+\left(a-8\right)x+4\left(a-8\right)-4a+28⋮x+4\)
hay a=7
xac dinh cac so a b c de co dang thuc x^3-ax^2+bx-c=(x-a)(x-b)(x-c)
Gợi ý thôi.
\(x^3-ax^2+bx-c=\left(x-a\right)\left(x-b\right)\left(x-c\right)\)
\(\Rightarrow x^3-ax^2+bx-c\)có ba nghiệm \(x=a,x=b,x=c\)
Theo định lí Vi-et:\(\hept{\begin{cases}a+b+c=a\\ab+bc+ca=b\\abc=c\end{cases}\Leftrightarrow}\hept{\begin{cases}b=-c\\ab+bc+ca=b\\c\left(ab-1\right)=0\end{cases}}\)
okeee cam on ban
(x+a)(x+5)=x2+3x+b voi moi x; xac dinh a va b
Ta có: (x+a)(x+5) = x2+3x+b
\(\Leftrightarrow\) x2+5x+ax+5a = x2+3x+b
\(\Leftrightarrow\) x(5+a)+5a = 3x+b
\(\Leftrightarrow\left\{{}\begin{matrix}5+a=3\\5a=b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=-10\end{matrix}\right.\)