viết(x+3)x(x2-3x+9) dưới dạng tổng
Bài 1: Viết các đa thức sau dưới dạng bình phương của một tổng hoặc một hiệu:
a) a2-6a+9 b) 1/4 x2+2xy2+4y4
Bài 2: Tìm x, biết:
a) (3x-5)(5-3x)+9(x+1)2=30
b) (x+4)2-(x+1)(x-1)=16
Bài 1:
a) \(a^2-6a+9=\left(a-3\right)^2\)
b) \(\dfrac{1}{4}x^2+2xy^2+4y^4=\left(\dfrac{1}{2}x+2y^2\right)^2\)
Bài 2:
a) \(\Leftrightarrow-9x^2+30x-25+9x^2+18x+9=30\)
\(\Leftrightarrow48x=46\Leftrightarrow x=\dfrac{23}{24}\)
b) \(\Leftrightarrow x^2+8x+16-x^2+1=16\)
\(\Leftrightarrow8x=-1\Leftrightarrow x=-\dfrac{1}{8}\)
Viết các biểu thức sau dưới dạng bình phương của một tổng
a) x2 + 3x +1
b) x2 + y2 + 2xy
c) 9x2 +12x +4
d) -4x2 - 9 - 12x
a) Sửa đề: \(x^2+3x+1\rightarrow x^2+2x+1\)
\(x^2+2x+1=\left(x+1\right)^2\)
b) \(x^2+y^2+2xy=\left(x+y\right)^2\)
c) \(9x^2+12x+4=\left(3x+2\right)^2\)
d) \(-4x^2-9-12x=-\left(4x^2+12x+9\right)=-\left(2x+3\right)^2\)
Viết các đa thức sau dưới dạng tổng của các đơn thức rồi thu gọn các đơn thức đồng dạng(nếu có)và tìm bậc của những đa thức đó với tập hợp các biến.
a) (x2 - y2) (x2 + y2) - 3xy2(x + y) + 5x2y2 + x2y(x - y)
b) 3x(x2y + xy2) - 7xy(x2 - y2) - x(3y2 - 2xy2 - 5y - 1)
viết các biểu thức sau dưới dạng tổng hoặc hiệu của 2 lập phương:
a, (3x - 1) (9x2 + 3x + 1)
b, (1 - \(\dfrac{x}{5}\)) (\(\dfrac{x^2}{25}\) + \(\dfrac{x}{5}\) + 1)
c, (x +3y) (x2 - 3xy + 9y2)
d, (4x + 3y) (16x2 - 12xy + 9y2)
a: \(\left(3x-1\right)\left(9x^2+3x+1\right)=27x^3-1\)
b: \(\left(1-\dfrac{x}{5}\right)\left(\dfrac{x^2}{25}+\dfrac{x}{5}+1\right)=1-\dfrac{x^3}{125}\)
c: \(\left(x+3y\right)\left(x^2-3xy+9y^2\right)=x^3+27y^3\)
d: \(\left(4x+3y\right)\left(16x^2-12xy+9y^2\right)=64x^3+27y^3\)
Viết các biểu thức sau dưới dạng tổng hoặc hiệu các lập phương
a) (x + 5)( x 2 – 5x + 25); b) (1 – x)( x 2 + x + 1);
c) (y + 3t)(9 t 2 – 3yt + y 2 ); d) 4 − u 2 u 2 4 + 2 u + 16 .
Viết các biểu thức sau dưới dạng bình phương của một tổng (hiệu).
\(\dfrac{x^2}{4}\)-3x+9=
\(\dfrac{x^2}{4}-3x+9=\left(\dfrac{x}{2}-3\right)^2\)
Viết biểu thức x^3 + 3x^2 + 3x + 1 dưới dạng lập phương của một tổng.
Ta có x 3 + 3 x 2 + 3 x + 1 = x 3 + 3 x 2 . 1 + 3 x . 1 2 + 1 3 = ( x + 1 ) 3 .
Viết biểu thức ( x 2 + 3 ) ( x 4 – 3 x 2 + 9 ) dưới dạng tổng hai lập phương
A. x 2 3 + 3 3
B. x 2 3 - 3 3
C. x 2 3 + 9 3
D. x 2 3 - 9 3
Ta có
( x 2 + 3 ) ( x 4 – 3 x 2 + 9 ) = ( x 2 + 3 ) x 2 2 - 3 x 2 + 3 2 = x 2 3 + 3 3
Đáp án cần chọn là: A
Viết biểu thức ( x + 1 ) x 2 - x + 1 dưới dạng tổng hai lập phương
Ta có: ( x + 1 ) ( x 2 - x + 1 ) = x 3 + 1 3 = x 3 + 1 .