Cho tam gián ABC vuông tại A. Đường phân giác trong của góc B cắt AC tại D. Biết BD = 7, CD = 5. Tính độ dài đoạn thẳng AD
Cho tam giác vuông ABC(góc A=90 độ). Một đường thẳng song song với cạnh BC cắt 2 cạnh AB và AC theo thứ tự tại M và N, đường thẳng qua N và song song với AB,cắt BC tại D. Cho biết AM=6cm, AN=8cm, BM=4cm.
a, Tính độ dài đoạn thẳng MN, NC và BC
b, Tính diện tích hình bình hành BMND
Cho tam giác vuông ABC(góc A=90 độ). Một đường thẳng song song với cạnh BC cắt 2 cạnh AB và AC theo thứ tự tại M và N, đường thẳng qua N và song song với AB,cắt BC tại D. Cho biết AM=6cm, AN=8cm, BM=4cm.
a, Tính độ dài đoạn thẳng MN, NC và BC
b, Tính diện tích hình bình hành BMND
cho tam giác ABC vuông tại A , kẻ AH vuông góc với BC tại H
a) Cmr : tam giác HAC đồng dạng tam giác ABC
b) biết AC=16cm , BC=20cm . tính độ dài đoạn AB , AH
c) kẻ tia phân giác BD của góc ABC cắt AH tại I và cắt AC tại D . chứng minh : tam giác AID là tam giác cân
d) chứng minh : AI.AD=IH.DC
a) Xét \(\Delta HAC\) và \(\Delta ABC\) có :
Góc AHC = góc BAC = 90o; góc C chung
=> \(\Delta HAC\) đồng dạng với \(\Delta ABC\) (g.g)
b) Vì \(\Delta ABC\) vuông tại A nên AB2 + AC2 = BC2 => AB2 = BC2 - AC2 = 202 - 162 = 144
=> \(AB=\sqrt{144}=12\left(cm\right)\)
Từ a) => \(\frac{AH}{AB}=\frac{AC}{BC}\) hay \(\frac{AH}{6}=\frac{8}{10}\) => \(AH=\frac{6.8}{10}=4,8\left(cm\right)\)
c) Ta có \(\Delta ABD\) đồng dạng với \(\Delta HBI\) (g.g) ('Bạn tự chứng minh')
=> Góc BIH = góc ADB
Mà góc BIH = góc AID (đ2) => Góc AID = góc ADB
=> Tam giác AID cân tại A
d) ('Mình ko biết')
a) Xét \(\Delta HAC\) và \(\Delta ABC\) có :
Góc AHC = góc BAC = 90o; góc C chung
=> \(\Delta HAC\) đồng dạng với \(\Delta ABC\) (g.g)
b) Vì \(\Delta ABC\) vuông tại A nên AB2 + AC2 = BC2 => AB2 = BC2 - AC2 = 202 - 162 = 144
=> \(AB=\sqrt{144}=12\left(cm\right)\)
Từ a) => \(\frac{AH}{AB}=\frac{AC}{BC}\) hay \(\frac{AH}{6}=\frac{8}{10}\) => \(AH=\frac{6.8}{10}=4,8\left(cm\right)\)
c) Ta có \(\Delta ABD\) đồng dạng với \(\Delta HBI\) (g.g) ('Bạn tự chứng minh')
=> Góc BIH = góc ADB
Mà góc BIH = góc AID (đ2) => Góc AID = góc ADB
=> Tam giác AID cân tại A
cho ΔABC vuông tại A , đường cao AH. Biết AB = 9cm, AC= 12cm, tia phân giác của góc BAH cắt BC tại D, tia phân giác của góc ACB cắt AH, AD theo thứ tự tại F,K
a, tính độ dài BC
b, ΔADC cân
c, DF//AB
d, DF cắt AB tại M chứng minh rằng HM//AD
e, AH.BC=AB.AC
VẼ hình hộ mik luôn ạ❗ mik xin cảm ơn
cho ΔABC vuông tại A , đường cao AH. Biết AB = 9cm, AC= 12cm, tia phân giác của góc BAH cắt BC tại D, tia phân giác của góc ACB cắt AH, AD theo thứ tự tại F,K
a, tính độ dài BC
b, ΔADC cân
c, DF//AB
d, DF cắt AB tại M chứng minh rằng HM//AD
e, AH.BC=AB.AC
vẽ hình giúp mik luon với ạ❕ mik xin cảm ơn
a: BC=căn 9^2+12^2=15cm
b: góc DAC+góc BAD=90 độ
góc CDA+góc HAD=90 độ
mà góc BAD=góc HAD
nên góc CAD=góc CDA
=>ΔCAD cân tại C
c: ΔCAD cân tại C
mà CK là phân giác
nên CK vuông góc AD
Xét ΔCAD có
CK,AH là đường cao
CK cắt AH tại F
=>F là trực tâm
=>DF vuông góc AC
=>DF//AB
e: S ABC=1/2*AB*AC=1/2*AH*BC
=>AH*BC=AB*AC
Cho tam giác ABC có các góc đều nhọn(AB<AC)Phân giác của góc A cat81t cạnh BC tại D.Vẽ qua B đường thẳng m vuông góc vs AD tại E và cắt AC tại F
a)CM:AB=AF
b)Cm:ABC>ACB
c)Qua F kẻ đường thẳng song song vs BC cắt AD tại H.Lấy điểm K nằm giữa C và D sao cho FH=DK.CM:BFK=90 độ
d)Tính số đo BAE và ABE của tam giác ABE,Biết 1/2BAE=2/5ABE
Cho tam giác ABC có các góc đều nhọn(AB<AC)Phân giác của góc A cat cạnh BC tại D.Vẽ qua B đường thẳng m vuông góc vs AD tại E và cắt AC tại F
a)CM:AB=AF
b)Cm:ABC>ACB
c)Qua F kẻ đường thẳng song song vs BC cắt AD tại H.Lấy điểm K nằm giữa C và D sao cho FH=DK.CM:BFK=90 độ
d)Tính số đo BAE và ABE của tam giác ABE,Biết 1/2BAE=2/5ABE
Làm hộ mik câu c,d thôi nhé
Bài 1: Cho tam giác ABC vuông tại A và có đường phân giác BE ( E € AC). Kẻ ED vuông góc BC ( D € BC)
a) CMR: Tam giác ABE = tam giác DBE
b) CMR: BE là đường trung trực của đoạn thẳng AD
c) Gọi F là giao của AB và DE. C/M AD song song FC
Bài 2: Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.
a) chứng minh: AD = DH
b) so sánh độ dài cạnh AD và DC
c) chứng minh tam giác KBC là tam giác cân
Mình kẻ hình đc rồi... nhưng hôg zải đc... zúp mình vs
bạn kẻ được hình của cả 2 bài rồi đúng ko. mình chỉ trả lời câu hỏi chứ ko vẽ hình đâu bạn nha
Bài 1:
a) xét tam giác ABE và tam giác DBE có: góc BAE = góc BDE (= 90o) ; cạnh BE chung; góc ABE = góc DBE ( do BE là phân giác của góc B)
=> tam giác ABE = tam giác DBE ( trường hợp cạnh huyền góc nhọn)
b) Do tam giác ABE = tam giác DBE ( chứng minh câu a) => AB = BD và AE = ED ( cặp cạnh tương ứng) => BE là trung trực của AD
c) xét tam giác AEF và tam giác DEC có: AE = DE ( c/m câu b); góc AEF = góc DEC ( đối đỉnh); góc FAE = góc EDC (=90o)
=> tam giác AEF = tam giác DEC ( trường hợp g.c.g ) => AE = DC (1)
mặt khác, AB = BD ( c/m câu b) (2) => tam giác ABD cân tại B => góc BDA = góc B :2 (3)
từ (1) và (2) => AB + AE = BD + DC hay BE = BC => tam giác BEC cân tại B => góc BCE = góc B : 2 (4)
từ (3) và (4) => góc BDA = góc BCE mà 2 góc này ở vị trí đồng vị so với DC nên AD // FC
Bài 2:
a) xét tam giác ABD và tam giác HBD có: góc BAD = góc BHD (= 90o) ; cạnh BD chung; góc ABD = góc HDB ( do BD là phân giác của góc B) => tam giác ABD = tam giác HBD => AD = DH ( cặp cạnh tương ứng)
b) do AD = DH ( c/m câu a) (1)
xét tam giác DHC có góc DHC = 90o => DH < DC ( quan hệ đường vuông góc với đường xiên) (2)
từ (1) và (2) => AD < DC
c) xét tam giác ADK và tam giác HDC có: AD = DH ( c/m câu a); góc ADK = góc HDC ( đối đỉnh); góc DAK = góc DHC (=90o)
=> tam giác ADK = tam giác HDC ( trường hợp g.c.g ) => AK = HC (3)
mặt khác, AB = BH ( do tam giác ABD = tam giác HBD) (4)
từ (1) và (2) => AB + AK = BH + HC hay BK = BC => tam giác BEC cân tại B
Xong rồi nha :)
Cho tam giác ABC vuông tại A, có AC = 5 cm, BC = 13 cm
a)TÍnh độ dài cạnh AB
b)Trên tia AC lấy điểm D sao cho AB=AD. Vẽ AE vuông góc với BD (E thuộc BD). C/m tam giác AED=tam giác AEB và AE là tia phân giác góc BAD
c)AE cắt BC tại F.C/m góc ADF=góc ABF
d)Đường thẳng vuông góc với BC tại F cắt tia CA tại H. C/m FB=FH
AI LÀM ĐÚNG VÀ NHANH MÌNH TICK CHO :DD