Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Tiến Đạt
Xem chi tiết
Trần Tiến Đạt
Xem chi tiết
Trần Tuấn Hoàng
22 tháng 3 2022 lúc 20:19

\(f\left(x_1+x_2\right)=f\left(x_1\right)+f\left(x_2\right)\)

\(\Rightarrow a\left(x_1+x_2\right)+b=ax_1+b+ax_2+b\)

\(\Rightarrow a\left(x_1+x_2\right)+b=a\left(x_1+x_2\right)+2b\)

\(\Rightarrow b=2b\)

\(\Rightarrow2b-b=0\Rightarrow b=0\)

Trần Tiến Đạt
Xem chi tiết
Quang Minh Tống
Xem chi tiết
Lê Tài Bảo Châu
11 tháng 5 2021 lúc 23:16

\(x^2+ax+b+1=0\)

\(\Delta=a^2-4b-4\)

Để pt có 2 nghiệm pb \(\Leftrightarrow\Delta>0\Leftrightarrow a^2-4b-4>0\)

Theo hệ thức Vi-et ta có: \(\hept{\begin{cases}x_1+x_2=-a\\x_1.x_2=b+1\end{cases}}\)

Ta có: \(\hept{\begin{cases}x_1-x_2=3\\x_1^3-x_2^3=9\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x_1-x_2=3\\\left(x_1-x_2\right)\left(x_1^2+x_1x_2+x_2^2\right)=9\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x_1-x_2=3\\x_1^2+x_1x_2+x_2^2=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x_1-x_2=3\\\left(x_1-x_2\right)^2+3x_1x_2=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x_1-x_2=3\\x_1x_2=-2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x_1=3+x_2\\\left(3+x_2\right)x_2=-2\left(1\right)\end{cases}}\)

\(\left(1\right)\Leftrightarrow x_2^2+3x_2+2=0\)

\(\Delta=1\)

\(\Rightarrow\)pt có 2 nghiệm pb \(\orbr{\begin{cases}x_2=\frac{-3+1}{2}=-1\Rightarrow x_1=2\\x_2=\frac{-3-1}{2}=-2\Rightarrow x_1=1\end{cases}}\)

TH1: \(x_1=2;x_2=-1\)

\(\Rightarrow\hept{\begin{cases}a=-1\\b=-3\end{cases}}\)( LOẠI vì a^2 -4b-4 <0 )

TH2: \(x_1=1;x_2=-2\)

\(\Rightarrow\hept{\begin{cases}a=1\\b=-3\end{cases}}\)( tm )

VẬY ...

Khách vãng lai đã xóa
LÊ VŨ HÀ THU
Xem chi tiết
Nhật Hạ
9 tháng 6 2020 lúc 18:12

Ta có: P(x1 + x2) = a(x1 + x2) + b = ax1 + ax2 + b

P(x1) + P(x2) = ax1 + b + ax2 + b = ax1 + ax2 + 2b 

Để P(x1 + x2) = P(x1) + P(x2) thì ax1 + ax2 + b = ax1 + ax2 + 2b 

=> b = 2b => b - 2b = 0 =>  -b = 0 => b = 0

Vậy khi b = 0 , a \in  {\mathbb  R} thì đẳng thức P(x1 + x2) = P(x1) + P(x2

Khách vãng lai đã xóa
Trần Khánh Ly
Xem chi tiết
Le thi minh thu
Xem chi tiết
Le Thi Khanh Huyen
25 tháng 4 2017 lúc 20:31

Ta có :

\(P\left(x_1+x_2\right)=a.\left(x_1+x_2\right)+b\)

\(P\left(x_1\right)+P\left(x_2\right)=a.x_1+b+a.x_2+b=a\left(x_1+x_2\right)+2b\)

Theo đề bài ta có \(a\left(x_1+x_2\right)+b=a\left(x_1+x_2\right)+2b\). Lấy VP - VT, ta được b = 0

Như vậy với b = 0 và mọi số thực A thì \(P\left(x_1+x_2\right)=P\left(x_1\right)+P\left(x_2\right)\)

vlkt
Xem chi tiết
Trần Tuấn Hoàng
12 tháng 4 2022 lúc 21:11

\(P\left(x\right)-Q\left(x\right)=x^2+ax+b-x^2-cx-d=x\left(a-c\right)+b-d\)

\(P\left(x_1\right)-Q\left(x_1\right)=x_1\left(a-c\right)+b-d=0\) (1)

\(P\left(x_2\right)-Q\left(x_2\right)=x_2\left(a-c\right)+b-d=0\) (2)

-Từ (1) và (2) suy ra:

\(x_1\left(a-c\right)=x_2\left(a-c\right)\)

-Vì \(x_1\ne x_2\Rightarrow a-c=0\Rightarrow a=c\Rightarrow b=d\)

-Vậy \(P\left(x\right)=Q\left(x\right)\forall x\)

 

MINH LÊ ĐÌNH
Xem chi tiết
MINH LÊ ĐÌNH
Xem chi tiết
Kaito Kid
25 tháng 3 2022 lúc 14:26

Giả sử x1,x2 là 2 nghiệm phân biệt của đa thức P(x)=ax2+bx+c trong đó a khác 0,c khác 0.Hãy tìm nghiệm của đa thức             Q(x)=cx2+bx+a theo x1,x2

undefined