Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phùng Gia Bảo
Xem chi tiết
trần xuân quyến
Xem chi tiết
Nguyễn Minh Huy
Xem chi tiết
lý canh hy
27 tháng 10 2018 lúc 16:21

ĐKXĐ: \(-3\le x\le6\)

Đặt \(\sqrt{3+x}=a;\sqrt{6-x}=b\left(a,b\ge0\right)\),ta có

\(\hept{\begin{cases}a+b-ab=3\left(1\right)\\a^2+b^2=9\end{cases}\Rightarrow\hept{\begin{cases}2a+2b-2ab=6\\\left(a+b\right)^2-2ab=9\end{cases}}}\)

\(\Rightarrow\left(a+b\right)^2-2\left(a+b\right)=3\Rightarrow\left(a+b\right)^2-2\left(a+b\right)-3=0\)

\(\Rightarrow\left(a+b-3\right)\left(a+b+1\right)=0\)

Do \(a,b\ge0\)nên a+b+1>0

\(\Rightarrow a+b-3=0\)\(\Rightarrow a+b=3\)thay vào (1) ta được \(ab=0\Rightarrow\hept{\begin{cases}a+b=3\\ab=0\end{cases}\Rightarrow\hept{\begin{cases}a=0\\b=3\end{cases}}}\)hoặc \(\hept{\begin{cases}a=3\\b=0\end{cases}}\)

Sau đó bn tự thay vào rồi giải tiếp nhé

Linh Vũ
Xem chi tiết
Cô Hoàng Huyền
29 tháng 9 2017 lúc 10:17

Đặt \(t=\sqrt[3]{x+6}\Rightarrow x+6=t^3\Rightarrow x=t^3-6\)

Phương trình trở thành \(x^3-\sqrt[3]{6+t}=6\)

Tiếp tục đặt \(h=\sqrt[3]{6+t}\Rightarrow t=h^3-6\)

Phương trình trở thành \(x^3-h=6\Rightarrow h=x^3-6\)

Từ đó ta có hệ 3 ẩn hoán vị vòng quanh \(\hept{\begin{cases}x=t^3-6\\t=h^3-6\\h=x^3-6\end{cases}}\)

Do x, t và h bình đẳng trong hệ trên nên ta giả sử x = min {x ; t; h}

Do \(x\le t;x\le h\Rightarrow\hept{\begin{cases}t^3-6\le h^3-6\\t^3-6\le x^3-6\end{cases}}\Rightarrow\hept{\begin{cases}t\le h\\t\le x\end{cases}}\)

Suy ra x = t = h.

Phương trình trở thành \(x=x^3-6\Rightarrow x^3-x-6=0\Rightarrow x=2.\) 

Vậy phương trình có nghiệm x = 2.

Linh Vũ
28 tháng 9 2017 lúc 21:08
ai lm giúp mình vs, = 6 thui nhá
Nguyễn Trung Hiếu
Xem chi tiết
Cô Hoàng Huyền
22 tháng 9 2016 lúc 15:57

ĐK: \(-3\le x\le6.\)

Đặt \(\hept{\begin{cases}\sqrt{3+x}=a\\\sqrt{6-x}=b\end{cases}\Rightarrow\hept{\begin{cases}a^2+b^2=9\\a+b-ab=3\end{cases}\Rightarrow}\hept{\begin{cases}\left(a+b\right)^2-2ab=9\\\left(a+b\right)-ab=3\end{cases}}}\)

Đặt \(\hept{\begin{cases}a+b=u\\ab=v\end{cases}\left(u,v\ge0\right)\Rightarrow\hept{\begin{cases}u^2-2v=9\\u-v=3\end{cases}\Rightarrow}\hept{\begin{cases}u^2-2u-3=0\\v=u-3\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}u=3\\v=0\end{cases}\Rightarrow\hept{\begin{cases}a+b=3\\ab=0\end{cases}}}\)

Th1: \(\hept{\begin{cases}a=3\\b=0\end{cases}\Rightarrow\hept{\begin{cases}\sqrt{3+x}=3\\\sqrt{6-x}=0\end{cases}\Rightarrow}x=6\left(tmđk\right).}\)

Th2: \(\hept{\begin{cases}a=0\\b=3\end{cases}\Rightarrow\hept{\begin{cases}\sqrt{3+x}=0\\\sqrt{6-x}=3\end{cases}\Rightarrow}x=-3}\left(tmđk\right).\)

Vậy x = 6 hoặc x = -3.

Trịnh Văn Đại
21 tháng 9 2016 lúc 21:39

kết quả phương trình là x=6

VRCT_Ran Love Shinichi
Xem chi tiết
alibaba nguyễn
11 tháng 9 2018 lúc 16:47

Đặt \(\hept{\begin{cases}\sqrt[6]{x-3}=a\\\sqrt[6]{x-7}=b\end{cases}}\)

\(\Rightarrow a^2+b^2-6ab=0\)

Dễ thây a  = 0 không là nghiệm.

Đặt \(b=ta\)

\(\Rightarrow a^2+t^2a^2-6ta^2=0\)

\(\Leftrightarrow t^2-6t+1=0\)

Làm nôt

Nhan Thanh
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 8 2021 lúc 21:44

1.

ĐKXĐ: \(x< 5\)

\(\Leftrightarrow\sqrt{\dfrac{42}{5-x}}-3+\sqrt{\dfrac{60}{7-x}}-3=0\)

\(\Leftrightarrow\dfrac{\dfrac{42}{5-x}-9}{\sqrt{\dfrac{42}{5-x}}+3}+\dfrac{\dfrac{60}{7-x}-9}{\sqrt{\dfrac{60}{7-x}}+3}=0\)

\(\Leftrightarrow\dfrac{9x-3}{\left(5-x\right)\left(\sqrt{\dfrac{42}{5-x}}+3\right)}+\dfrac{9x-3}{\left(7-x\right)\left(\sqrt{\dfrac{60}{7-x}}+3\right)}=0\)

\(\Leftrightarrow\left(9x-3\right)\left(\dfrac{1}{\left(5-x\right)\left(\sqrt{\dfrac{42}{5-x}}+3\right)}+\dfrac{1}{\left(7-x\right)\left(\sqrt{\dfrac{60}{7-x}}+3\right)}\right)=0\)

\(\Leftrightarrow x=\dfrac{1}{3}\)

Nguyễn Việt Lâm
6 tháng 8 2021 lúc 21:46

b.

ĐKXĐ: \(x\ge2\)

\(\sqrt{\left(x-2\right)\left(x-1\right)}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{\left(x-1\right)\left(x+3\right)}\)

\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x-1\right)}-\sqrt{x-2}+\sqrt{x+3}-\sqrt{\left(x-1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x-2}-\sqrt{x+3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{x-2}-\sqrt{x+3}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=1\\x-2=x+3\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow x=2\)

Nguyễn Việt Lâm
6 tháng 8 2021 lúc 21:49

3.

ĐKXĐ: \(x\ge-1\)

\(x^2+x-12+12\left(\sqrt{x+1}-2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+4\right)+\dfrac{12\left(x-3\right)}{\sqrt{x+1}+2}=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+4+\dfrac{12}{\sqrt{x+1}+2}\right)=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Nguyen Thi Phuong Anh
Xem chi tiết
WTF
Xem chi tiết
Xem chi tiết