tìm hàm số biết đồ thị của hàm số đó là một đường thẳng đi qua M(-1;-20) và N(3;8). Khảo sát sự biến thiên và vẽ đồ thị hàm số đó
Cho hàm số:y=x+m có đồ thị là đường thẳng (d)
a) Tìm m để đồ thị hàm số đi qua điểm D(1;-2) và vẽ đồ thị hàm số trong hệ trục
tọa độ Oxy. Cho biết điểm E(2;5) có thuộc đồ thị hàm số vừa vẽ không?
b) Gọi E và F lần lượt là giao điểm của đường thẳng (d) với hai trục Ox và Oy. Tìm
m để khoảng cách từ O đến đường thẳng EF bằng 3.
Giúp mik câu b vssss ;-;
\(a,\Leftrightarrow1+m=-2\Leftrightarrow m=-3\\ \Leftrightarrow y=x-3\\ \text{Thay }x=2;y=5\Leftrightarrow5=2-3=-1\left(\text{vô lí}\right)\\ \Leftrightarrow E\notinđths\\ b,\text{PT giao Ox và Oy: }\left\{{}\begin{matrix}y=0\Rightarrow x=-m\Rightarrow E\left(-m;0\right)\Rightarrow OE=\left|m\right|\\x=0\Rightarrow y=m\Rightarrow F\left(0;m\right)\Rightarrow OF=\left|m\right|\end{matrix}\right.\)
Gọi H là chân đường cao từ O đến EF
Áp dụng HTL: \(\dfrac{1}{OH^2}=\dfrac{1}{OE^2}+\dfrac{1}{OF^2}=\dfrac{1}{2m^2}=\dfrac{1}{3^2}=\dfrac{1}{9}\)
\(\Leftrightarrow m^2=\dfrac{9}{2}\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{3}{\sqrt{2}}\\m=-\dfrac{3}{\sqrt{2}}\end{matrix}\right.\)
Mọi người giúp em với ạ,em cảm ơn !
Bài 1: Cho đường thẳng d, y=(m-1)x+m
a)Tìm m để hàm số nghịch biến trên R
b) tìm m để đồ thị hàm số đi qua gốc tọa độ
c) Với m=2,vẽ đồ thị hàm số
d) Chứng tỏ rằng đường thẳng d luôn luôn đi qua 1 điểm cố định với mọi m,Tìm điểm đó
Bài 2: Cho 3 điểm A(2;4),B(-3;-1),C(2;1).Hãy chứng minh 3 điểm thẳng hàng
Bài 3: Cho hàm số y=ax-4
a) Tìm a biết đồ thị hàm số đi qua điểm M(2;5)
b)Vẽ đồ thị hàm số vừa tìm được
Bài 4 : Tìm hàm số y=ax+b,biết đồ thị hàm số của nó đi qua 2 điểm A(2;5) và B(-2;-3)
Cho hàm số y = f (x) = ( a - 3 )x -3.
a. Tìm điều kiện của a để hàm số nghịch biến trên R
b. Tìm giá trị của a biết đồ thị hàm số trên đi qua điểm M ( 1 ; -2 )
c. Tìm giá trị của a biết đồ thị hàm số trên là một đường thẳng song song vói đường thẳng y = 3x
a) Đề hàm số nghịch biến thì a - 3 < 0 \(\Leftrightarrow a< 3\).
b) Hàm số đi qua điểm M (1; -2 ) nên: \(\left(a-3\right).1-3=-2\)\(\Leftrightarrow a-3=1\)\(\Leftrightarrow a=4\).
c) Đồ thị hàm số là một đường thẳng song song với đường thẳng y = 3x nên \(a-3=3\Leftrightarrow a=6\).
Cho hàm số y = f (x) = ( a - 3 )x -3.
a. Tìm điều kiện của a để hàm số nghịch biến trên R
b. Tìm giá trị của a biết đồ thị hàm số trên đi qua điểm M ( 1 ; -2 )
c. Tìm giá trị của a biết đồ thị hàm số trên là một đường thẳng song song vói đường thẳng y = 3x
b) thay x=1 , y=-2 vào phương trình f(x) , ta có : \(\left(a-3\right)\times1-3=-2\Leftrightarrow a-3=1\Leftrightarrow a=4\)
c) đồ thị hàm số song song với đường thẳng y=3x , suy ra : \(a-3=3\Leftrightarrow a=6\)
1. Cho hàm số y=(m-1).x+(m+1) (1)
a) Xác định hàm số y khi đường thẳng y (1) đi qua góc tọa độ
b) CMR đường thẳng (1) luôn đi qua một điểm cố định
2. Cho hàm số y=(m-1)x+m+3
a) tìm giá trị của m để hàm số // với đồ thị y=-3x+1
b) CM đồ thị hàm số luôn đi qua một điểm cố định.Tìm tọa độ điểm đó
Bài 1 : Cho hàm số y = (m + 5)x+ 2m – 10
Với giá trị nào của m thì y là hàm số bậc nhất
Với giá trị nào của m thì hàm số đồng biến.
Tìm m để đồ thị hàm số điqua điểm A(2; 3)
Tìm m để đồ thị cắt trục tung tại điểm có tung độ bằng 9.
Tìm m để đồ thị đi qua điểm 10 trên trục hoành .
Tìm m để đồ thị hàm số song song với đồ thị hàm số y = 2x -1
Chứng minh đồ thị hàm số luôn đi qua 1 điểm cố định với mọi m.
Tìm m để khoảng cách từ O tới đồ thị hàm số là lớn nhất
Bài 2: Cho đường thẳng y=2mx +3-m-x (d) . Xác định m để:
Đường thẳng d qua gốc toạ độ
Đường thẳng d song song với đường thẳng 2y- x =5
Đường thẳng d tạo với Ox một góc nhọn
Đường thẳng d tạo với Ox một góc tù
Đường thẳng d cắt Ox tại điểm có hoành độ 2
Đường thẳng d cắt đồ thị Hs y= 2x – 3 tại một điểm có hoành độ là 2
Đường thẳng d cắt đồ thị Hs y= -x +7 tại một điểm có tung độ y = 4
Đường thẳng d đi qua giao điểm của hai đường thảng 2x -3y=-8 và y= -x+1
Bài 3: Cho hàm số y=( 2m-3).x+m-5
Vẽ đồ thị với m=6
Chứng minh họ đường thẳng luôn đi qua điểm cố định khi m thay đổi
Tìm m để đồ thị hàm số tạo với 2 trục toạ độ một tam giác vuông cân
Tìm m để đồ thị hàm số tạo với trục hoành một góc 45o
Tìm m để đồ thị hàm số tạo với trục hoành một góc 135o
Tìm m để đồ thị hàm số tạo với trục hoành một góc 30o , 60o
Tìm m để đồ thị hàm số cắt đường thẳng y = 3x-4 tại một điểm trên 0y
Tìm m để đồ thị hàm số cắt đường thẳng y = -x-3 tại một điểm trên 0x
Bài4 (Đề thi vào lớp 10 tỉnh Hải Dương năm 2000,2001) Cho hàm số y = (m -2)x + m + 3
a)Tìm điều kiện của m để hàm số luôn luôn nghịch biến .
b)Tìm điều kiện của m để đồ thị cắt trục hoành tại điểm có hoành độ bằng 3.
c)Tìm m để đồ thị hàm số y = -x + 2, y = 2x –1 và y = (m - 2)x + m + 3 đồng quy.
d)Tìm m để đồ thị hàm số tạo với trục
Bài 1:
Đặt: (d): y = (m+5)x + 2m - 10
Để y là hàm số bậc nhất thì: m + 5 # 0 <=> m # -5
Để y là hàm số đồng biến thì: m + 5 > 0 <=> m > -5
(d) đi qua A(2,3) nên ta có:
3 = (m+5).2 + 2m - 10
<=> 2m + 10 + 2m - 10 = 3
<=> 4m = 3
<=> m = 3/4
(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:
9 = (m+5).0 + 2m - 10
<=> 2m - 10 = 9
<=> 2m = 19
<=> m = 19/2
(d) đi qua điểm 10 trên trục hoành nên ta có:
0 = (m+5).10 + 2m - 10
<=> 10m + 50 + 2m - 10 = 0
<=> 12m = -40
<=> m = -10/3
(d) // y = 2x - 1 nên ta có:
\(\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}}\) <=> \(\hept{\begin{cases}m=-3\\m\ne\frac{9}{2}\end{cases}}\) <=> \(m=-3\)
Giả sử (d) luôn đi qua điểm cố định M(x0; y0)
Ta có: \(y_0=\left(m+5\right)x_0+2m-10\)
<=> \(mx_0+5x_0+2m-10-y_0=0\)
<=> \(m\left(x_o+2\right)+5x_0-y_0-10=0\)
Để M cố định thì: \(\hept{\begin{cases}x_0+2=0\\5x_0-y_0-10=0\end{cases}}\) <=> \(\hept{\begin{cases}x_0=-2\\y_0=-20\end{cases}}\)
Vậy...
Cho hàm số bậc nhất có đồ thị là đường thẳng d. Tìm hàm số đó biết dd đi qua A (1; 3),B (2; −1)
A. Y = −4x + 2
B. Y = −2x + 3
C. Y = −4x + 5
D. Y = −4x + 7
tìm m thỏa mãn yêu cầu bài toán
a) đồ thị hàm số \(y=\dfrac{mx-1}{2x+m}\) có đường tiệm cận đứng đi qua điểm A (-1;\(\sqrt{2}\))
b) đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số \(y=\dfrac{x-2}{2x-m}\)
c) biết đồ thị hàm số \(y=\dfrac{\left(m+1\right)x+2}{x-n+1}\) nhận trục hoành và trục tung làm 2 đường tiệm cận. Tính m+n
d) đồ thị hàm số \(y=\dfrac{x-1}{x^2+2\left(m-1\right)x+m^2-2}\) có 2 đường tiệm cận đứng
a: \(\lim\limits_{x\rightarrow+\infty}\dfrac{mx-1}{2x+m}=\lim\limits_{x\rightarrow+\infty}\dfrac{m-\dfrac{1}{x}}{2+\dfrac{m}{x}}=\dfrac{m}{2}\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{mx-1}{2x+m}=\lim\limits_{x\rightarrow-\infty}\dfrac{m-\dfrac{1}{x}}{2+\dfrac{m}{x}}=\dfrac{m}{2}\)
Vậy: x=m/2 là tiệm cận đứng duy nhất của đồ thị hàm số \(y=\dfrac{mx-1}{2x+m}\)
Để x=m/2 đi qua \(A\left(-1;\sqrt{2}\right)\) thì \(\dfrac{m}{2}=-1\)
=>\(m=-1\cdot2=-2\)
b: \(\lim\limits_{x\rightarrow-\infty}\dfrac{x-2}{2x-m}=\lim\limits_{x\rightarrow-\infty}\dfrac{1-\dfrac{2}{x}}{2-\dfrac{m}{x}}=\dfrac{1}{2}\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{x-2}{2x-m}=\lim\limits_{x\rightarrow+\infty}\dfrac{1-\dfrac{2}{x}}{2-\dfrac{m}{x}}=\dfrac{1}{2}\)
=>x=1/2 là tiệm cận đứng duy nhất của đồ thị hàm số \(y=\dfrac{x-2}{2x-m}\)
=>Không có giá trị nào của m để đường thẳng x=1 là tiệm cận đứng của đồ thị hàm số \(y=\dfrac{x-2}{2x-m}\)
Xác định hàm số bậc nhất y=ax+b biết đồ thị hàm số đi qua A(-1,5) và song song với đồ thị hàm số y=3x+1 biết phương trình của đồ thị hàm số đi qua M(-1,4) và song song với đường thẳng y=2x-1.
cho hàm số y=mx+1 trong đó m là tham số
a, Tìm m để đồ thị hàm số đi qua điểm A (1; 4)
b, Tìm m để đồ thị hàm số song song với đường thẳng : y = m^2x + m+1
làm ơn giải chi tiết giúp mik vs ạ
a: Thay x=1 và y=4 vào y=mx+1, ta được:
\(m\cdot1+1=4\)
=>m+1=4
=>m=3
b: Để hai đường thẳng này song song với nhau thì
\(\left\{{}\begin{matrix}m^2=m\\m\ne1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m^2-m=0\\m\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\left(m-1\right)=0\\m\ne1\end{matrix}\right.\)
=>m=0