Vẽ tam giác ABC. Gỉa sử \(\widehat{A}\) = 60o. Hai tia phân giác kẻ từ đỉnh B và C cắt nhau tại I.
a, So sánh \(\widehat{IBC}+\widehat{ICB}\) với \(\widehat{ABC}+\widehat{ACB}\)
b, Tính \(\widehat{BIC}\)
Vẽ tam giác ABC. Gỉa sử \(\widehat{A}\) = 60o. Hai tia phân giác kẻ từ đỉnh B và C cắt nhau tại I.
a, So sánh \(\widehat{IBC}+\widehat{ICB}\) với \(\widehat{ABC}+\widehat{ACB}\)
b, Tính \(\widehat{BIC}\)
P/s: Hình vẽ chỉ để giúp nhìn rõ vấn đề hơn nhưng độ chính xác không cao
a) Vì BI là tia phân giác của góc ABC
\(\Rightarrow\widehat{IBC}=\dfrac{\widehat{ABC}}{2}\left(1\right)\)
Vì CI là tia phân giác của góc ACB
\(\Rightarrow\widehat{ICB}=\dfrac{\widehat{ACB}}{2}\left(2\right)\)
Từ (1) và (2) suy ra
\(\widehat{IBC}+\widehat{ICB}=\dfrac{\widehat{ABC}}{2}+\dfrac{\widehat{ACB}}{2}=\dfrac{\widehat{ABC}+\widehat{ACB}}{2}\)
Vì \(\dfrac{\widehat{ABC}+\widehat{ACB}}{2}< \widehat{ABC}+\widehat{ACB}\)
\(\Rightarrow\widehat{IBC}+\widehat{ICB}< \widehat{ABC}+\widehat{ACB}\)
b) Vì \(\widehat{A}=60^0\)
\(\Rightarrow\widehat{ABC}+\widehat{ACB}=180^0-60^0=120^0\)
Hay \(\widehat{IBC}+\widehat{IBA}+\widehat{ICB}+\widehat{ICA}=120^0\)
\(\Rightarrow2\widehat{IBC}+2\widehat{ICB}=120^0\)
\(\Rightarrow2\left(\widehat{IBC}+\widehat{ICB}\right)=120^0\)
\(\Rightarrow\widehat{IBC}+\widehat{ICB}=60^0\)
Ta có: \(\widehat{IBC}+\widehat{ICB}+\widehat{BIC}=180^0\)
\(\Rightarrow60^0+\widehat{BIC}=180^0\)
\(\Rightarrow\widehat{BIC}=180^0-60^0=120^0\)
1/ vẽ tam giác . Giả sứ ABC = \(80^o\) , ACB = \(40^o\). hai tia phân giác kẻ từ đỉnh B và đỉnh C cắt tại I . tính IBC + và tính BIC
2/ vẽ \(\Delta ABC\). Giả sử A = 60. hai tia phân giác kẻ từ đỉnh B và C cắt nhau tại điểm I
a/ so sánh \(\widehat{IBC}\) + \(\widehat{ICB}\) với \(\widehat{ABC}+\widehat{ACB}\)
b/ tính BIC
3/ vẽ\(\Delta ABC\) vuông tại A . giả sứ B = 55 .tính C
4/ \(\Delta AHC\) vuông ở H , có đường phân giác CF . giả sử A = 32
1/ tính ACH và HCF 2/ tính HFC
vẽ tam giác ABC giả sử A=60 độ hai tia phân giác kẻ từ đỉnh B và cắt nhau tại I so sánh IBC + ICB với ABC +ACB tính BIC
1/ vẽ tam giác . Giả sứ ABC = \(80^o\) , ACB = \(40^o\). hai tia phân giác kẻ từ đỉnh B và đỉnh C cắt tại I . tính IBC + và tính BIC
2/ vẽ \(\Delta ABC\). Giả sử A = 60. hai tia phân giác kẻ từ đỉnh B và C cắt nhau tại điểm I
a/ so sánh \(\widehat{IBC}\) + \(\widehat{ICB}\) với \(\widehat{ABC}+\widehat{ACB}\)
b/ tính BIC
3/ vẽ\(\Delta ABC\) vuông tại A . giả sứ B = 55 .tính C
4/ \(\Delta AHC\) vuông ở H , có đường phân giác CF . giả sử A = 32
1/ tính ACH và HCF 2/ tính HFC
Bài 3:
góc C=90-55=35 độ
Bài 1:
góc IBC=góc ABC/2=40 độ
góc ICB=40/2=20 độ
=>góc IBC+góc ICB=60 độ
=>góc BIC=120 độ
Cho tam giác ABC có BC > AC, I là giao điểm của hai đường phân giác góc A và góc B. Khi đó
A.\(\widehat {ICA} = \widehat {ICB}\). B.\(\widehat {IAC} = \widehat {IBC}\). C.\(\widehat {ICA} > \widehat {ICB}\). D.\(\widehat {ICA} < \widehat {IBC}\).
Ta có: I là giao điểm của hai đường phân giác góc A và góc B nên suy ra: CI là đường phân giác của góc C.
Vậy \(\widehat {ICA} = \widehat {ICB}\) ( tính chất tia phân giác của một góc).
Đáp án: A. \(\widehat {ICA} = \widehat {ICB}\).
Tam giác ABC có ba đường phân giác cắt nhau tại I. Chứng minh:
a) \(\widehat {IAB} + \widehat {IBC} + \widehat {ICA} = 90^\circ \);
b) \(\widehat {BIC} = 90^\circ + \dfrac{1}{2}\widehat {BAC}\).
a) I là giao điểm của ba đường phân giác tại ba góc A, B, C nên:
\(\widehat {IAB} = \widehat {IAC};\widehat {IBA} = \widehat {IBC};\widehat {ICB} = \widehat {ICA}\).
Tổng ba góc trong một tam giác bằng 180° nên:
\(\begin{array}{l}\widehat {BAC} + \widehat {ACB} + \widehat {CBA} = 180^\circ \\\widehat {IAB} + \widehat {IAC} + \widehat {IBA} + \widehat {IBC} + \widehat {ICB} + \widehat {ICA} = 180^\circ \\2\widehat {IAB} + 2\widehat {IBC} + 2\widehat {ICA} = 180^\circ \end{array}\)
Vậy \(\widehat {IAB} + \widehat {IBC} + \widehat {ICA} = 90^\circ \).
b) Tổng ba góc trong một tam giác bằng 180°. Xét tam giác BIC:
\(\begin{array}{l}\widehat {BIC} + \widehat {IBC} + \widehat {ICB} = 180^\circ \\\widehat {BIC} = 180^\circ - (\widehat {IBC} + \widehat {ICB})\end{array}\).
Mà \(\widehat {IAB} + \widehat {IBC} + \widehat {ICA} = 90^\circ \)→ \(\widehat {IBC} + \widehat {ICA} = 90^\circ - \widehat {IAB}\).
Vậy: \(\begin{array}{l}\widehat {BIC} = 180^\circ - (\widehat {IBC} + \widehat {ICB})\\\widehat {BIC} = 180^\circ - (90^\circ - \widehat {IAB})\\\widehat {BIC} = 90^\circ + \widehat {IAB}\end{array}\)
Mà \(\widehat {IAB} = \dfrac{1}{2}\widehat {BAC}\)(IA là phân giác của góc BAC).
Vậy \(\widehat {BIC} = 90^\circ + \widehat {IAB} = 90^\circ + \dfrac{1}{2}\widehat {BAC}\).
Cho tam giác ABC có \(\widehat{B}\) = 90◦ và \(\widehat{A}=\widehat{C}\) . Hai tia phân giác AD và CE lần lượt của các góc \(\widehat{BAC},\widehat{ACB}\) cắt nhau tại I. Chứng minh rằng ID = IE.
nhanh lên mình cần gấp lắm
giúp mình với huhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhu
Vẽ tam giác ABC. Giả sử ABC = 80 , ACB = 40 độ. Hai tia phân giác kẻ từ đỉnh B và C cắt nhau tại I. Tính IBC + ICB và tính BIC
vì BI là tia phân giác của ^ABC => ^ ABI = ^ IBC= ^ ABC / 2 = 80 / 2 =40
=>^IBC=40
vì CI là tia phân giác của ^ACB => ^ACI = ^ ICB = ACB / 2 = 40 / 2 = 20
=>^ICB = 20
Ta có : ^BIC+^IBC+^ICB= 180 ( tổng ba góc của 1 tam giác )
=> ^BIC +40+20 =180
=>^BIC = 120
mình ko vẽ đc hình , thông cảm . mà nếu đúng thì nhớ k !
cho tam giác ABC có g= 80 độ, tia phân giác của \(\widehat{gB}\)và \(\widehat{C}\)cắt nhau tại điểm I.
a) tính g \(\widehat{ABC}\)
b) Gọi giao điểm của tia \(\widehat{BI}\)đối với cạnh AC là điểm M. So sánh g \(\widehat{BIC},\widehat{BMC}\),\(\widehat{BAC}\)