Cho \(x,y,x>0\) và\(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=1\)
Tìm Min \(A=\sqrt{2x^2+3xy+4y^2}+\sqrt{2y^2+3yz+4z^2}+\sqrt{2z^2+3zx+4x^2}\)
cho x , y và z là các số thực dương thõa mãn \(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=1\) . Tìm giá trị nhỏ nhất của biểu thức \(P=\sqrt{2x^2+3xy+4y^2}+\sqrt{2y^2+3yz+4z^2}+\sqrt{2z^2+3zx+4x^2}\)
Áp dụng BĐT Cô-si ta có:
\(2x^2+3xy+4y^2\ge3\sqrt[3]{2x^2\cdot3xy\cdot4y^2}=3\sqrt[3]{24x^3y^3}\Rightarrow\sqrt{2x^2+3xy+4y^2}\ge\sqrt{xy\cdot3\sqrt[3]{24}}\)
Tương tự: \(\sqrt{2y^2+3yz+4z^2}\ge\sqrt{yz\cdot3\sqrt[3]{24}}\); \(\sqrt{2z^2+3zx+4x^2}\ge\sqrt{zx\cdot3\sqrt[3]{24}}\)
Cộng theo vế 3 BĐT vừa tìm, ta được:
\(P\ge\sqrt{3\sqrt[3]{24}}\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=\sqrt{3\sqrt[3]{24}}=\sqrt[6]{648}\)
Áp dụng BĐT Buniacoxki ta có
\(\left(2x^2+3xy+4y^2\right)\left(2+3+4\right)\ge\left(2x+3\sqrt{xy}+4y\right)^2\)
=> \(\sqrt{2x^2+3xy+4y^2}\ge\frac{2x+3\sqrt{xy}+4y}{3}\)
Khi đó
\(P\ge\frac{1}{3}\left(6x+6y+6z+3\left(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\right)\right)\)
Lại có \(x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\)
=> \(P\ge3\left(\sqrt{yz}+\sqrt{xy}+\sqrt{xz}\right)=3\)
MinP=3 khi \(x=y=z=\frac{1}{3}\)
Cho x+y+z=3 TÌm gtnn:
A=\(\sqrt{2x^2+3xy+2y^2}+\sqrt{2y^2+3yz+2z^2}+\sqrt{2z^2+3zx+2z^2}\)
xài mincopxki đi bn h mk bận ko giải dc
Bài 1. Chứng minh rằng với mọi x và y ta luôn có: \(\sqrt{\dfrac{x^2+4y^2}{2}}+\sqrt{\dfrac{x^2+2xy+4y^2}{3}}\ge x+2y\)
Bài 2. Cho x, y, z là các số thực tuỳ ý. Chứng minh rằng:
\(\sqrt{x^2+xy+y^2}\sqrt{y^2+yz+z^2}\sqrt{z^2+zx+x^2}\ge\sqrt{3}\left(x+y+z\right)\)
Bài 3. Cho x, y, z là các số thực dương thoả mãn x+y+z=1. Tìm giá trị nhỏ nhất của biểu thức: \(P=\sqrt{2x^2+xy+2y^2}\sqrt{2y^2+yz+2z^2}\sqrt{2z^2+zx+2x^2}\)
Bài 3. Cho x, y, z là các số thực không âm thoả mãn x+y+z=3. Tìm giá trị nhỏ nhất của biểu thức: \(A=\sqrt{2x^2+3xy+2y^2}\sqrt{2y^2+3yz+2z^2}\sqrt{2z^2+3zx+2x^2}\)
cho x, y, z dương thỏa mãn: \(xy+yz+zx=3\). Tìm Min \(P=\sqrt{2x^2+xy+2y^2}+\sqrt{2y^2+yz+2z^2}+\sqrt{2z^2+zx+2x^2}\)
Xét nào:)
Từ giả thiết suy ra x + y + z > 3
Ta có: \(P=2x^2+xy+2y^2=\frac{5}{4}\left(x+y\right)^2+\frac{3}{4}\left(x-y\right)^2\ge\frac{5}{4}\left(x+y\right)^2\)
Suy ra \(\sqrt{2x^2+xy+y^2}\ge\sqrt{\frac{5}{4}}.\left(x+y\right)=\frac{\sqrt{5}}{2}\left(x+y\right)\)
Tương tự hai BĐT còn lại và cộng theo vế: \(P\ge\sqrt{5}\left(x+y+z\right)\ge3\sqrt{5}\)
Đẳng thức xảy ra khi x = y = z = 1
Is it right?!?
bạn giải thích rõ hộ mình dòng 2 với
đặt \(A=\frac{\sqrt{yz}}{x+3\sqrt{yz}}+\frac{\sqrt{zx}}{y+3\sqrt{zx}}+\frac{\sqrt{xy}}{z+3\sqrt{xy}}\)
\(\Rightarrow1-3A=\frac{x}{x+3\sqrt{yz}}+\frac{y}{y+3\sqrt{zx}}+\frac{z}{z+3\sqrt{xy}}\)
\(\ge\frac{x}{x+\frac{3}{2}\left(y+z\right)}+\frac{y}{y+\frac{3}{2}\left(z+x\right)}+\frac{z}{z+\frac{3}{2}\left(x+y\right)}\)
\(=\frac{2x}{2x+3\left(y+z\right)}+\frac{2y}{2y+3\left(z+x\right)}+\frac{2z}{2z+3\left(x+y\right)}\)
\(=\frac{2x^2}{2x^2+3xy+3xz}+\frac{2y^2}{2y^2+3yz+3xy}+\frac{2z^2}{2z^2+3zx+3yz}\)
\(\ge\frac{2\left(x+y+z\right)^2}{2\left(x^2+y^2+z^2\right)+6\left(xy+yz+zx\right)}=\frac{2\left(x+y+z\right)^2}{2\left(x+y+z\right)^2+2\left(xy+yz+zx\right)}\)
\(\ge\frac{2\left(x+y+z\right)^2}{2\left(x+y+z\right)^2+\frac{2}{3}\left(x+y+z\right)^2}=\frac{2\left(x+y+z\right)^2}{\frac{8}{3}\left(x+y+z\right)^2}=\frac{3}{4}\)
\(\Rightarrow1-3A\ge\frac{3}{4}\Rightarrow A\le\frac{3}{4}\left(Q.E.D\right)\)
Cho x, y, z > 0 và x + y + z = 1. Chứng minh rằng: \(\sqrt{2x^2+xy+2y^2}+\sqrt{2y^2+yz+2z^2}+\sqrt{2z^2+zx+2x^2}\ge\sqrt{5}\)
\(VT=\sum\sqrt{\frac{1}{2}\left(x^2+2xy+y^2\right)+\frac{3}{2}\left(x^2+y^2\right)}\)
\(VT\ge\sum\sqrt{\frac{1}{2}\left(x+y\right)^2+\frac{3}{4}\left(x+y\right)^2}=\sum\sqrt{\frac{5}{4}\left(x+y\right)^2}\)
\(VT\ge\frac{\sqrt{5}}{2}\left(x+y\right)+\frac{\sqrt{5}}{2}\left(y+z\right)+\frac{\sqrt{5}}{2}\left(z+x\right)\)
\(VT\ge\sqrt{5}\left(x+y+z\right)=\sqrt{5}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)
cho x,y,z>0 tìm Min \(\frac{\sqrt{x^2-xy+y^2}}{x+y+2z}+\frac{\sqrt{y^2-yz+z^2}}{y+z+2x}+\frac{\sqrt{z^2-zx+x^2}}{z+x+2y}\)
Cho \(\hept{\begin{cases}x,y,z>0\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\end{cases}}\)Tìm min A = \(\frac{\sqrt{x^2+2y^2}}{xy}+\frac{\sqrt{y^2+2z^2}}{yz}+\frac{\sqrt{z^2+2x^2}}{zx}\)
Ta có \(\frac{\sqrt{x^2+2y^2}}{xy}=\sqrt{\frac{1}{y^2}+\frac{2}{x^2}}\)
Áp dụng BĐT Buniacoxki ta có
\(\sqrt{\left(\frac{1}{y^2}+\frac{2}{x^2}\right)\left(1+2\right)}\ge\sqrt{\left(\frac{1}{y}+\frac{2}{x}\right)^2}=\frac{1}{y}+\frac{2}{x}\)
=> \(\sqrt{3}A\ge3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=3\)
=> \(A\ge\sqrt{3}\)
\(MinA=\sqrt{3}\)khi x=y=z=3
Cho xy+yz+zx=2xyz ; x,y,z>0 Tìm max \(A=\sqrt{\frac{x}{2y^2z^2+xyz}}+\sqrt{\frac{y}{2x^2z^2+xyz}}+\sqrt{\frac{z}{2x^2y^2+xyz}}\)
\(A=\sqrt{\frac{x}{2y^2z^2+xyz}}+\sqrt{\frac{y}{2x^2z^2+xyz}}+\sqrt{\frac{z}{2x^2y^2+xyz}}\)
\(A=\sqrt{\frac{x^2}{2xyz.yz+xz.xy}}+\sqrt{\frac{y^2}{2xyz.xz+xy.yz}}+\sqrt{\frac{z^2}{2xyz.xy+xz.yz}}\)
\(A=\sqrt{\frac{x^2}{yz\left(xy+yz+xz\right)+xz.xy}}+\sqrt{\frac{y^2}{xz\left(xy+yz+xz\right)+xy.yz}}+\sqrt{\frac{z^2}{xy\left(xy+yz+xz\right)+xz.yz}}\)
\(A=\sqrt{\frac{x^2}{\left(yz+xy\right)\left(yz+xz\right)}}+\sqrt{\frac{y^2}{\left(xz+xy\right)\left(xz+yz\right)}}+\sqrt{\frac{z^2}{\left(xy+yz\right)\left(xy+xz\right)}}\)
Áp dụng bđt \(\sqrt{ab}\le\frac{a+b}{2}\) ta có:
\(2A\le\frac{x}{yz+xy}+\frac{x}{yz+xz}+\frac{y}{xz+xy}+\frac{y}{xz+yz}+\frac{z}{xy+yz}+\frac{z}{xy+xz}\)
\(=\frac{x+z}{yz+xy}+\frac{x+y}{yz+xz}+\frac{y+z}{xz+xy}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
Mà: \(xy+yz+xz=2xyz\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)
\(\Rightarrow2A\le2\Rightarrow A\le1."="\Leftrightarrow a=b=c=\frac{3}{2}\)