Cho a+b+c=3.Tìm GTNN của A=a^2(a+b)^2+b^2(b+c)^2+c^2(c+a)^2
cho a b c 0 và a^2+b^2+c^2=3 tìm GTNN của P= (a^2+b^2)/(a+b) +(b^2+c^2)/(b+c)+(c^2+a^2)/(a+c)
cho a,b,c>0 , tìm GTNN của biểu thức:
P= \(\dfrac{a^3+b^3+c^3}{2abc}+\dfrac{a^2+b^2}{c^2+ab}+\dfrac{b^2+c^2}{a^2+bc}+\dfrac{c^2+a^2}{b^2+ca}\)
\(P\ge\dfrac{3abc}{2abc}+\dfrac{a^2+b^2}{c^2+\dfrac{a^2+b^2}{2}}+\dfrac{b^2+c^2}{a^2+\dfrac{b^2+c^2}{2}}+\dfrac{c^2+a^2}{b^2+\dfrac{c^2+a^2}{2}}\)
\(P\ge\dfrac{3}{2}+2\left(\dfrac{a^2+b^2}{a^2+c^2+b^2+c^2}+\dfrac{b^2+c^2}{a^2+b^2+a^2+c^2}+\dfrac{a^2+c^2}{a^2+b^2+b^2+c^2}\right)\)
Đặt \(\left(a^2+b^2;b^2+c^2;a^2+c^2\right)=\left(x;y;z\right)\)
\(\Rightarrow P\ge\dfrac{3}{2}+2\left(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\right)=\dfrac{3}{2}+2\left(\dfrac{x^2}{xy+xz}+\dfrac{y^2}{yz+xy}+\dfrac{z^2}{xz+yz}\right)\)
\(P\ge\dfrac{3}{2}+\dfrac{2\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)}\ge\dfrac{3}{2}+\dfrac{3\left(xy+yz+zx\right)}{xy+yz+zx}=3+\dfrac{3}{2}=\dfrac{9}{2}\)
Dấu "=" xảy ra khi \(a=b=c\)
cho các số thực dương a b c thở mãn abc=1. tìm gtnn của P=a^3+b^3/a^2+ab+b^2 + b^3+c^3/b^2+bc+c^2 + c^3+a^3/c^2+ac+a^2
Lời giải:
Ta có:
$a^3+b^3=(a+b)(a^2-ab+b^2)=(a+b)[(a^2+ab+b^2)-2ab]$
Áp dụng BĐT AM-GM:
$a^2+ab+b^2=(a^2+b^2)+ab\geq 2ab+ab=3ab$
$\Rightarrow 2ab\leq \frac{2(a^2+ab+b^2)}{3}$
$\Rightarrow a^2-ab+b^2=a^2+b^2+ab-2ab\geq a^2+b^2+ab- \frac{2}{3}(a^2+ab+b^2)=\frac{1}{3}(a^2+ab+b^2)$
$\Rightarrow a^3+b^3=(a+b)(a^2-ab+b^2)\geq \frac{1}{3}(a+b)(a^2+ab+b^2)$
$\Rightarrow \frac{a^3+b^3}{a^2+ab+b^2}\geq \frac{1}{3}(a+b)$
Hoàn toàn tương tự với các phân thức khác và cộng theo vế thu được:
$P\geq \frac{1}{3}(a+b)+\frac{1}{3}(b+c)+\frac{1}{3}(c+a)=\frac{2}{3}(a+b+c)$
$\geq \frac{2}{3}.3\sqrt[3]{abc}=2$
Vậy $P_{\min}=2$. Giá trị này đạt tại $a=b=c=1$
Lời giải:
Ta có:
$a^3+b^3=(a+b)(a^2-ab+b^2)=(a+b)[(a^2+ab+b^2)-2ab]$
Áp dụng BĐT AM-GM:
$a^2+ab+b^2=(a^2+b^2)+ab\geq 2ab+ab=3ab$
$\Rightarrow 2ab\leq \frac{2(a^2+ab+b^2)}{3}$
$\Rightarrow a^2-ab+b^2=a^2+b^2+ab-2ab\geq a^2+b^2+ab- \frac{2}{3}(a^2+ab+b^2)=\frac{1}{3}(a^2+ab+b^2)$
$\Rightarrow a^3+b^3=(a+b)(a^2-ab+b^2)\geq \frac{1}{3}(a+b)(a^2+ab+b^2)$
$\Rightarrow \frac{a^3+b^3}{a^2+ab+b^2}\geq \frac{1}{3}(a+b)$
Hoàn toàn tương tự với các phân thức khác và cộng theo vế thu được:
$P\geq \frac{1}{3}(a+b)+\frac{1}{3}(b+c)+\frac{1}{3}(c+a)=\frac{2}{3}(a+b+c)$
$\geq \frac{2}{3}.3\sqrt[3]{abc}=2$
Vậy $P_{\min}=2$. Giá trị này đạt tại $a=b=c=1$
cho a,b,c>0 và a^2+b^2+c^2=1. Tìm GTNN của P= a^3/b+2c+ b^3/c+2a+c^3/a+2b
Ta có: \(1=a^2+b^2+c^2\ge ab+bc+ca\).
\(P=\dfrac{a^3}{b+2c}+\dfrac{b^3}{c+2a}+\dfrac{c^3}{a+2b}=\dfrac{a^4}{ab+2ca}+\dfrac{b^4}{bc+2ab}+\dfrac{c^4}{ca+2bc}\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{3\left(ab+bc+ca\right)}=\dfrac{1}{3\left(ab+bc+ca\right)}\ge\dfrac{1}{3}\)
Dấu \(=\) xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\).
Cho a+b+c≥2022. Tìm gtnn của M= a^3/(a^2+bc)+b^3/(b^2+ca)+c^3/(c^2+ab)
\(\dfrac{a^3}{a^2+bc}=a-\dfrac{abc}{a^2+bc}\ge a-\dfrac{abc}{2a\sqrt{bc}}=a-\dfrac{\sqrt{bc}}{2}\)
\(\dfrac{b^3}{b^2+ca}\ge b-\dfrac{\sqrt{ac}}{2};\dfrac{c^3}{c^2+ab}\ge c-\dfrac{\sqrt{ab}}{2}\)
\(\Rightarrow M\ge a+b+c-\left(\dfrac{\sqrt{ab}}{2}+\dfrac{\sqrt{bc}}{2}+\dfrac{\sqrt{ca}}{2}\right)=2022-\left(\dfrac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}\right)\)
\(do:\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\le a+b+c\)
\(\Rightarrow M\ge2022-\dfrac{a+b+c}{2}=2022-\dfrac{2022}{2}=1011\)
\(min_M=2021\Leftrightarrow a=b=c=674\)
Cho a,b,c thỏa mãn a+b+c=3/2. Tìm GTNN của M=4(a^2+b^2+c^2)
a+b+c=3/2 => (a+b+c)2 = 9/4 <=> a2+b2+c2+2ac+2bc+2ac =9/4
mà ta có a2+b2+c2>= ac+bc+ac ( dễ dàng chứng minh được khi nhân hai lên rồi nhóm thành hằng đẳng thức hai số)
=> 3(a2+b2+c2)>= 9/4 <=> 4(a2+b2+c2) >= 4
=> min M=4 dấu bằng xảy ra <=> a=b=c=1/2
mình nghĩ bạn Hoài có cách làm đúng nhưng kết quả sai
Mình dựa trên bài bạn thì được kết quả là Min=3 cơ
Cho a,b,c thỏa mãn a+b+c=3/2. Tìm GTNN của M=4(a^2+b^2+c^2)
Cho a,b,c thỏa mãn a+b+c=3/2. Tìm GTNN của M=4(a^2+b^2+c^2)
Áp dụng BĐT BCS : \(\frac{3M}{4}=\left(1^2+1^2+1^2\right).\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2=\frac{9}{4}\Rightarrow M\ge3\)
Đẳng thức xảy ra khi a = b = c = 1/2
Vậy ..................................
cho 3 số a,b,c thỏa mãn a+b+c=2 .Tìm GTNN của biểu thức A=a^2+b^2+c^2
Áp dụng bất đẳng thức Cauchy - Schwarz dưới dạng Engel ta có :
\(A=a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{1+1+1}=\frac{2^2}{3}=\frac{4}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{2}{3}\)
Vậy .............
Ta dễ có BĐT sau \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
Khi đó \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=\frac{4}{3}\)
Đẳng thức xảy ra tại a=b=c=2/3