cho các số thực dương a b c thở mãn abc=1. tìm gtnn của P=a^3+b^3/a^2+ab+b^2 + b^3+c^3/b^2+bc+c^2 + c^3+a^3/c^2+ac+a^2
cho a,b,c>0 và a^2+b^2+c^2=1. Tìm GTNN của P= a^3/b+2c+ b^3/c+2a+c^3/a+2b
cho 3 số a,b,c thỏa mãn a+b+c=2 .Tìm GTNN của biểu thức A=a^2+b^2+c^2
Cho a, b, c>0. Tìm GTNN của \(A=\frac{a^3+b^3+c^3}{2abc}+\frac{a^2+b^2}{c^2+ab}+\frac{b^2+c^2}{a^2+bc}+\frac{c^2+a^2}{b^2+ca}\)
cho a+b+c=1. Tìm gtnn P=a^3+b^3+c^3+a^2(b+c)+b^2(c+a)+c^2(a+b)
(Câu 3)
Cho các số a,b,c thoả mãn a+b+c=0 và -1<a;b;c<2. Tìm GTNN của a^2+b^2+c^2
Cho 2(b^2+bc+c^2)=3(3-a^2).Tìm GTNN, LN của T=a+b+c
1/cho a+b+c=3 và a^2+b^2+c^2=ab+ac+bc
tính : Q=(a+1)^2+(b+2)^3+ (c+3)^3
2/cho x^2+y^2+z^2=8. Tìm GTNN của S=2xy +yz+xz
1/cho a+b+c=và a^2+b^2+c^2=ab+ac+bc
tính : Q=(a+1)^2+(b+2)^3+ (c+3)^3
2/cho x^2+y^2+z^2=8. Tìm GTNN của S=2xy +yz+xz