\(\dfrac{a^3}{a^2+bc}=a-\dfrac{abc}{a^2+bc}\ge a-\dfrac{abc}{2a\sqrt{bc}}=a-\dfrac{\sqrt{bc}}{2}\)
\(\dfrac{b^3}{b^2+ca}\ge b-\dfrac{\sqrt{ac}}{2};\dfrac{c^3}{c^2+ab}\ge c-\dfrac{\sqrt{ab}}{2}\)
\(\Rightarrow M\ge a+b+c-\left(\dfrac{\sqrt{ab}}{2}+\dfrac{\sqrt{bc}}{2}+\dfrac{\sqrt{ca}}{2}\right)=2022-\left(\dfrac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}\right)\)
\(do:\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\le a+b+c\)
\(\Rightarrow M\ge2022-\dfrac{a+b+c}{2}=2022-\dfrac{2022}{2}=1011\)
\(min_M=2021\Leftrightarrow a=b=c=674\)