Áp dụng bđt AM-GM:
\(M\ge\dfrac{a^3}{a^2+\dfrac{a^2+b^2}{2}+b^2}+\dfrac{b^3}{b^2+\dfrac{b^2+c^2}{2}+c^2}+\dfrac{c^3}{c^2+\dfrac{a^2+c^2}{2}+a^2}\)
\(=\dfrac{a^3}{\dfrac{3}{2}\left(a^2+b^2\right)}+\dfrac{b^3}{\dfrac{3}{2}\left(b^2+c^2\right)}+\dfrac{c^3}{\dfrac{3}{2}\left(c^2+a^2\right)}\)
\(=\dfrac{2}{3}\left(\dfrac{a^3}{a^2+b^2}+\dfrac{b^3}{b^2+c^2}+\dfrac{c^3}{c^2+a^2}\right)\)
Xét:
\(\dfrac{a^3}{a^2+b^2}+\dfrac{b^3}{b^2+c^2}+\dfrac{c^3}{c^2+a^2}\)
\(=a-\dfrac{ab^2}{a^2+b^2}+b-\dfrac{b^2c}{b^2+c^2}+c-\dfrac{c^2a}{c^2+a^2}\)
\(\ge a+b+c-\dfrac{ab^2}{2ab}-\dfrac{b^2c}{2bc}-\dfrac{c^2a}{2ac}=a+b+c-\dfrac{a}{2}-\dfrac{b}{2}-\dfrac{c}{2}=\dfrac{a+b+c}{2}=\dfrac{3}{2}\)
\(\Leftrightarrow M\ge1."="\Leftrightarrow a=b=c=1\)