Cho a,b,c là ba số thực dương thỏa mãn \(a+b+c=2\). Yìm GTLN của biểu thức
\(P=\dfrac{ab}{\sqrt{ab+2c}}+\dfrac{bc}{\sqrt{bc+2a}}+\dfrac{ca}{\sqrt{ac+2b}}\)
Cho 3 số dương a, b, c có tổng bằng 1. Tìm GTNN của \(\sqrt{a^2+2ab+2b^2}+\sqrt{b^2+2bc+2c^2}+\sqrt{c^2+2ca+2a^2}\)
Cho các số dương a,b,c thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=1\) . Tìm GTNN của
\(P=\sqrt{2a^2+ab+b^2}+\sqrt{2b^2+bc+c^2}+\sqrt{2c^2+ca+2a^2}\)
Cho a,b, c là 3 số thực dương . CMR
\(\dfrac{1}{a\sqrt{3a+2b}}\)+ \(\dfrac{1}{b\sqrt{3b+2c}}\) + \(\dfrac{1}{c\sqrt{3c+2a}}\)\(\ge\)\(\dfrac{3}{\sqrt{5abc}}\)
Cho 3 số thực a,b,c dương và thỏa mãn: \(a^2+b^2+c^2=3\). Tìm GTNN của biểu thức: \(A=\dfrac{1}{\sqrt{1+8a^3}}+\dfrac{1}{\sqrt{1+8b^3}}+\dfrac{1}{\sqrt{1+8c^3}}\)
Cho a;b là các số thực không âm thỏa mản: \(a\ge2\) và \(2b+4=ab\)
Tìm Max của: \(P=\dfrac{\sqrt{a^2-2a}}{a-1}+\dfrac{\sqrt{b^2+2b}}{b+1}+\dfrac{1}{a+b}\)
Cho a , b , c là các số thực dương thỏa mãn : \(7\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)=6\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)+2015\)
Tìm GTLN của biểu thức \(P=\dfrac{1}{\sqrt{3\left(2a^2+b^2\right)}}+\dfrac{1}{\sqrt{3\left(2b^2+c^2\right)}}+\dfrac{1}{\sqrt{3\left(2c^2+a^2\right)}}\)
Cho a,b,c là các số dương. CMR
\(\dfrac{a}{\sqrt{2b^2+2c^2-a^2}}+\dfrac{b}{\sqrt{2c^2+2a^2-b^2}}+\dfrac{c}{\sqrt{2a^2+2b^2-c^2}}\ge\sqrt{3}\)
Cho a, b, c là 3 số thực dương thỏa mãn: a+2b+3c=3. Tìm GTNN của biểu thức: \(Q=\dfrac{a+1}{1+4b^2}+\dfrac{2b+1}{1+9c^2}+\dfrac{3c+1}{1+a^2}\)